scispace - formally typeset
Search or ask a question
Author

Nicolas C. Hoch

Bio: Nicolas C. Hoch is an academic researcher from University of São Paulo. The author has contributed to research in topics: DNA repair & DNA damage. The author has an hindex of 9, co-authored 20 publications receiving 388 citations. Previous affiliations of Nicolas C. Hoch include St. Vincent's Health System & Universidade Federal do Rio Grande do Sul.

Papers
More filters
Journal ArticleDOI
05 Jan 2017-Nature
TL;DR: It is shown that biallelic mutations in the human XRCC1 gene are associated with ocular motor apraxia, axonal neuropathy, and progressive cerebellar ataxia, and genetic deletion of Parp1 rescued normal Cerebellar ADP-ribose levels and reduced the loss of cerebellary neurons and ataxic mice in Xrcc1-defective mice.
Abstract: XRCC1 is a molecular scaffold protein that assembles multi-protein complexes involved in DNA single-strand break repair. Here we show that biallelic mutations in the human XRCC1 gene are associated with ocular motor apraxia, axonal neuropathy, and progressive cerebellar ataxia. Cells from a patient with mutations in XRCC1 exhibited not only reduced rates of single-strand break repair but also elevated levels of protein ADP-ribosylation. This latter phenotype is recapitulated in a related syndrome caused by mutations in the XRCC1 partner protein PNKP and implicates hyperactivation of poly(ADP-ribose) polymerase/s as a cause of cerebellar ataxia. Indeed, remarkably, genetic deletion of Parp1 rescued normal cerebellar ADP-ribose levels and reduced the loss of cerebellar neurons and ataxia in Xrcc1-defective mice, identifying a molecular mechanism by which endogenous single-strand breaks trigger neuropathology. Collectively, these data establish the importance of XRCC1 protein complexes for normal neurological function and identify PARP1 as a therapeutic target in DNA strand break repair-defective disease.

192 citations

Journal ArticleDOI
TL;DR: In this paper, an updated and broadly supported nomenclature for mammalian ADP-ribosyltransferases was proposed, which will facilitate future discussions when addressing the biochemistry and biology of ADP.
Abstract: ADP-ribosylation, a modification of proteins, nucleic acids and metabolites, confers broad functions, including roles in stress responses elicited for example by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases, which transfer ADP-ribose from NAD+ onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ADP-ribosyltransferases are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as anti-viral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ADP-ribosyltransferases and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ADP-ribosyltransferases that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ADP-ribosyltransferases to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes.

93 citations

Journal ArticleDOI
TL;DR: The dual ability of ASCIZ to activate Dynll1 gene expression and to sense free DYNll1 protein levels enables a simple dynamic feedback loop to adjust DYNLL1 levels to cellular needs, which represents a novel mechanism for auto-regulation of gene expression.

61 citations

Journal ArticleDOI
TL;DR: These data identify PARP3 as a molecular sensor of nicked nucleosomes and demonstrate, for the first time, the ribosylation of chromatin at a site-specific DNA single-strand break.
Abstract: PARP3 is a member of the ADP-ribosyl transferase superfamily that we show accelerates the repair of chromosomal DNA single-strand breaks in avian DT40 cells. Two-dimensional nuclear magnetic resonance experiments reveal that PARP3 employs a conserved DNA-binding interface to detect and stably bind DNA breaks and to accumulate at sites of chromosome damage. PARP3 preferentially binds to and is activated by mononucleosomes containing nicked DNA and which target PARP3 trans-ribosylation activity to a single-histone substrate. Although nicks in naked DNA stimulate PARP3 autoribosylation, nicks in mononucleosomes promote the trans-ribosylation of histone H2B specifically at Glu2. These data identify PARP3 as a molecular sensor of nicked nucleosomes and demonstrate, for the first time, the ribosylation of chromatin at a site-specific DNA single-strand break.

56 citations

Journal ArticleDOI
TL;DR: In this paper, a robust immunofluorescence-based assay was used to show that activation of the IFN response induces ADP-ribosylation of host proteins and that ectopic expression of the SARS-CoV-2 Nsp3 macrodomain reverses this modification in human cells.

50 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The roles of PARP1 in mediating various aspects of DNA metabolism, such as single-strand break repair, nucleotide excision repair, double-stranded break repair and the stabilization of replication forks, and in modulating chromatin structure are discussed.
Abstract: Cells are exposed to various endogenous and exogenous insults that induce DNA damage, which, if unrepaired, impairs genome integrity and leads to the development of various diseases, including cancer. Recent evidence has implicated poly(ADP-ribose) polymerase 1 (PARP1) in various DNA repair pathways and in the maintenance of genomic stability. The inhibition of PARP1 is therefore being exploited clinically for the treatment of various cancers, which include DNA repair-deficient ovarian, breast and prostate cancers. Understanding the role of PARP1 in maintaining genome integrity is not only important for the design of novel chemotherapeutic agents, but is also crucial for gaining insights into the mechanisms of chemoresistance in cancer cells. In this Review, we discuss the roles of PARP1 in mediating various aspects of DNA metabolism, such as single-strand break repair, nucleotide excision repair, double-strand break repair and the stabilization of replication forks, and in modulating chromatin structure.

928 citations

Journal ArticleDOI
TL;DR: New findings on the diverse roles of PARPs in chromatin regulation, transcription, RNA biology, and DNA repair have been complemented by recent advances that link ADP-ribosylation to stress responses, metabolism, viral infections, and cancer.
Abstract: The discovery of poly(ADP-ribose) >50 years ago opened a new field, leading the way for the discovery of the poly(ADP-ribose) polymerase (PARP) family of enzymes and the ADP-ribosylation reactions that they catalyze. Although the field was initially focused primarily on the biochemistry and molecular biology of PARP-1 in DNA damage detection and repair, the mechanistic and functional understanding of the role of PARPs in different biological processes has grown considerably of late. This has been accompanied by a shift of focus from enzymology to a search for substrates as well as the first attempts to determine the functional consequences of site-specific ADP-ribosylation on those substrates. Supporting these advances is a host of methodological approaches from chemical biology, proteomics, genomics, cell biology, and genetics that have propelled new discoveries in the field. New findings on the diverse roles of PARPs in chromatin regulation, transcription, RNA biology, and DNA repair have been complemented by recent advances that link ADP-ribosylation to stress responses, metabolism, viral infections, and cancer. These studies have begun to reveal the promising ways in which PARPs may be targeted therapeutically for the treatment of disease. In this review, we discuss these topics and relate them to the future directions of the field.

475 citations

Journal ArticleDOI
TL;DR: The potential therapeutic use of simple organoselenium compounds has not yet been sufficiently explored and this class of compounds cannot discard as promising pharmaceutical agents, in effect, the future of the organochalcogens as pharmacological agents will depend on more detailed toxicological studies in the oncoming years.
Abstract: The advance in the area of synthesis and reactivity of organoselenium, as well as the discovery that selenium was the cause of severe intoxication episodes of livestock in the 1930s and the subsequent determination that selenium was an essential trace element in the diet for mammals, has motivated intense studies of the biological properties of both organic and inorganic selenium compounds. In this review, we shall cover a wide range of toxicological and pharmacological effects, in which organoselenium compounds are involved but the effects of inorganic compounds were not discussed in detail here. The molecular toxicity of inorganic selenium was described in relation to its interaction with endogenous –SH groups to allow a comparison with that of synthetic organoselenium compounds. Furthermore, in view of the recent points of epidemiological evidence that overexposure to selenium can facilitate the appearance of chronic degenerative diseases, we also briefly revised the history of selenium toxicity and physiology and how environmental selenium can reach inside the mammalian cells. The biological narrative of the element selenium, in the last century, has been marked by a contrast between its toxic and its beneficial effects. Thus, the potential therapeutic use of simple organoselenium compounds has not yet been sufficiently explored and, consequently, we cannot discard this class of compounds as promising pharmaceutical agents. In effect, the future of the organochalcogens as pharmacological agents will depend on more detailed toxicological studies in the oncoming years.

421 citations

Journal ArticleDOI
TL;DR: E ectopically expressed NRAV in human cells or transgenic mice and found that it significantly promotes influenza A virus replication and virulence and silencing NRAV suppressed IAV replication and virus production, suggesting that reduction of NRAV is part of the host antiviral innate immune response to virus infection.

260 citations

Journal ArticleDOI
29 Apr 2021-Nature
TL;DR: In this paper, the authors synthesize accumulating evidence that DNA damage affects most, if not all, aspects of the ageing phenotype, making it a potentially unifying cause of ageing.
Abstract: Ageing is a complex, multifaceted process leading to widespread functional decline that affects every organ and tissue, but it remains unknown whether ageing has a unifying causal mechanism or is grounded in multiple sources. Phenotypically, the ageing process is associated with a wide variety of features at the molecular, cellular and physiological level—for example, genomic and epigenomic alterations, loss of proteostasis, declining overall cellular and subcellular function and deregulation of signalling systems. However, the relative importance, mechanistic interrelationships and hierarchical order of these features of ageing have not been clarified. Here we synthesize accumulating evidence that DNA damage affects most, if not all, aspects of the ageing phenotype, making it a potentially unifying cause of ageing. Targeting DNA damage and its mechanistic links with the ageing phenotype will provide a logical rationale for developing unified interventions to counteract age-related dysfunction and disease. This Review examines the evidence showing that DNA damage is associated with ageing phenotypes, suggesting that it may have a central role as the cause of ageing.

214 citations