scispace - formally typeset
Search or ask a question
Author

Nicolas Chopin

Other affiliations: HEC Paris, University of Bristol, École Normale Supérieure  ...read more
Bio: Nicolas Chopin is an academic researcher from ENSAE ParisTech. The author has contributed to research in topics: Particle filter & Markov chain Monte Carlo. The author has an hindex of 29, co-authored 130 publications receiving 7419 citations. Previous affiliations of Nicolas Chopin include HEC Paris & University of Bristol.


Papers
More filters
Journal ArticleDOI
TL;DR: This work considers approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models, where the latent field is Gaussian, controlled by a few hyperparameters and with non‐Gaussian response variables and can directly compute very accurate approximations to the posterior marginals.
Abstract: Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models, where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged.

4,164 citations

Journal ArticleDOI
TL;DR: In this paper, particle filter methods are combined with importance sampling and Monte Carlo schemes in order to explore consistently a sequence of multiple distributions of interest, which can also offer an efficient estimation.
Abstract: SUMMARY Particle filter methods are complex inference procedures, which combine importance sampling and Monte Carlo schemes in order to explore consistently a sequence of multiple distributions of interest. We show that such methods can also offer an efficient estimation

611 citations

Journal ArticleDOI
TL;DR: A central limit theorem for the Monte Carlo estimates produced by these computational methods is established in this paper, and applies in a general framework which encompasses most of the sequential Monte Carlo methods that have been considered in the literature, including the resample-move algorithm of Gilks and Berzuini [J. R. Stat. Ser. B Statol. 63 (2001) 127,146] and the residual resampling scheme.
Abstract: The term “sequential Monte Carlo methods” or, equivalently, “particle filters,” refers to a general class of iterative algorithms that performs Monte Carlo approximations of a given sequence of distributions of interest (πt). We establish in this paper a central limit theorem for the Monte Carlo estimates produced by these computational methods. This result holds under minimal assumptions on the distributions πt, and applies in a general framework which encompasses most of the sequential Monte Carlo methods that have been considered in the literature, including the resample-move algorithm of Gilks and Berzuini [J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001) 127–146] and the residual resampling scheme. The corresponding asymptotic variances provide a convenient measurement of the precision of a given particle filter. We study, in particular, in some typical examples of Bayesian applications, whether and at which rate these asymptotic variances diverge in time, in order to assess the long term reliability of the considered algorithm.

481 citations

Journal ArticleDOI
TL;DR: A comprehensive review of particle methods that have been proposed to perform static parameter estimation in state-space models is presented in this article, where the advantages and limitations of these methods are discussed.
Abstract: Nonlinear non-Gaussian state-space models are ubiquitous in statistics, econometrics, information engineering and signal processing. Particle methods, also known as Sequential Monte Carlo (SMC) methods, provide reliable numerical approximations to the associated state inference problems. However, in most applications, the state-space model of interest also depends on unknown static parameters that need to be estimated from the data. In this context, standard particle methods fail and it is necessary to rely on more sophisticated algorithms. The aim of this paper is to present a comprehensive review of particle methods that have been proposed to perform static parameter estimation in state-space models. We discuss the advantages and limitations of these methods and illustrate their performance on simple models.

353 citations

Posted Content
TL;DR: The SMC2 algorithm is proposed, a sequential Monte Carlo algorithm, defined in the θ‐dimension, which propagates and resamples many particle filters in the x‐ dimension, which explores the applicability of the algorithm in both sequential and non‐sequential applications and considers various degrees of freedom.
Abstract: We consider the generic problem of performing sequential Bayesian inference in a state-space model with observation process y, state process x and fixed parameter theta. An idealized approach would be to apply the iterated batch importance sampling (IBIS) algorithm of Chopin (2002). This is a sequential Monte Carlo algorithm in the theta-dimension, that samples values of theta, reweights iteratively these values using the likelihood increments p(y_t|y_1:t-1, theta), and rejuvenates the theta-particles through a resampling step and a MCMC update step. In state-space models these likelihood increments are intractable in most cases, but they may be unbiasedly estimated by a particle filter in the x-dimension, for any fixed theta. This motivates the SMC^2 algorithm proposed in this article: a sequential Monte Carlo algorithm, defined in the theta-dimension, which propagates and resamples many particle filters in the x-dimension. The filters in the x-dimension are an example of the random weight particle filter as in Fearnhead et al. (2010). On the other hand, the particle Markov chain Monte Carlo (PMCMC) framework developed in Andrieu et al. (2010) allows us to design appropriate MCMC rejuvenation steps. Thus, the theta-particles target the correct posterior distribution at each iteration t, despite the intractability of the likelihood increments. We explore the applicability of our algorithm in both sequential and non-sequential applications and consider various degrees of freedom, as for example increasing dynamically the number of x-particles. We contrast our approach to various competing methods, both conceptually and empirically through a detailed simulation study, included here and in a supplement, and based on particularly challenging examples.

258 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Journal ArticleDOI
Simon N. Wood1
TL;DR: In this article, a Laplace approximation is used to obtain an approximate restricted maximum likelihood (REML) or marginal likelihood (ML) for smoothing parameter selection in semiparametric regression.
Abstract: Summary. Recent work by Reiss and Ogden provides a theoretical basis for sometimes preferring restricted maximum likelihood (REML) to generalized cross-validation (GCV) for smoothing parameter selection in semiparametric regression. However, existing REML or marginal likelihood (ML) based methods for semiparametric generalized linear models (GLMs) use iterative REML or ML estimation of the smoothing parameters of working linear approximations to the GLM. Such indirect schemes need not converge and fail to do so in a non-negligible proportion of practical analyses. By contrast, very reliable prediction error criteria smoothing parameter selection methods are available, based on direct optimization of GCV, or related criteria, for the GLM itself. Since such methods directly optimize properly defined functions of the smoothing parameters, they have much more reliable convergence properties. The paper develops the first such method for REML or ML estimation of smoothing parameters. A Laplace approximation is used to obtain an approximate REML or ML for any GLM, which is suitable for efficient direct optimization. This REML or ML criterion requires that Newton–Raphson iteration, rather than Fisher scoring, be used for GLM fitting, and a computationally stable approach to this is proposed. The REML or ML criterion itself is optimized by a Newton method, with the derivatives required obtained by a mixture of implicit differentiation and direct methods. The method will cope with numerical rank deficiency in the fitted model and in fact provides a slight improvement in numerical robustness on the earlier method of Wood for prediction error criteria based smoothness selection. Simulation results suggest that the new REML and ML methods offer some improvement in mean-square error performance relative to GCV or Akaike's information criterion in most cases, without the small number of severe undersmoothing failures to which Akaike's information criterion and GCV are prone. This is achieved at the same computational cost as GCV or Akaike's information criterion. The new approach also eliminates the convergence failures of previous REML- or ML-based approaches for penalized GLMs and usually has lower computational cost than these alternatives. Example applications are presented in adaptive smoothing, scalar on function regression and generalized additive model selection.

4,846 citations

Journal ArticleDOI
TL;DR: The glmmTMB package fits many types of GLMMs and extensions, including models with continuously distributed responses, but here the authors focus on count responses and its ability to estimate the Conway-Maxwell-Poisson distribution parameterized by the mean is unique.
Abstract: Count data can be analyzed using generalized linear mixed models when observations are correlated in ways that require random effects However, count data are often zero-inflated, containing more zeros than would be expected from the typical error distributions We present a new package, glmmTMB, and compare it to other R packages that fit zero-inflated mixed models The glmmTMB package fits many types of GLMMs and extensions, including models with continuously distributed responses, but here we focus on count responses glmmTMB is faster than glmmADMB, MCMCglmm, and brms, and more flexible than INLA and mgcv for zero-inflated modeling One unique feature of glmmTMB (among packages that fit zero-inflated mixed models) is its ability to estimate the Conway-Maxwell-Poisson distribution parameterized by the mean Overall, its most appealing features for new users may be the combination of speed, flexibility, and its interface’s similarity to lme4

4,497 citations

Posted Content
TL;DR: In this article, a generative and recognition model is proposed to represent approximate posterior distributions and act as a stochastic encoder of the data, which allows for joint optimisation of the parameters of both the generative model and the recognition model.
Abstract: We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent approximate posterior distributions, and that acts as a stochastic encoder of the data. We develop stochastic back-propagation -- rules for back-propagation through stochastic variables -- and use this to develop an algorithm that allows for joint optimisation of the parameters of both the generative and recognition model. We demonstrate on several real-world data sets that the model generates realistic samples, provides accurate imputations of missing data and is a useful tool for high-dimensional data visualisation.

3,316 citations