scispace - formally typeset
Search or ask a question
Author

Nicolas Collin

Other affiliations: University of Lausanne
Bio: Nicolas Collin is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Salivary gland & Leishmania. The author has an hindex of 5, co-authored 8 publications receiving 405 citations. Previous affiliations of Nicolas Collin include University of Lausanne.

Papers
More filters
Journal ArticleDOI
TL;DR: Certain sand fly salivary proteins are potent immunogens obligatorily co-deposited with Leishmania parasites during transmission and their inclusion in an anti-Leishmania vaccine would exploit anti-saliva immunity following an infective sand fly bite and set the stage for a protective anti- leishmania immune response.
Abstract: Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL) in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-γ at the site of sand fly bites. To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease. Two of 35 salivary proteins from the vector sand fly Lutzomyia longipalpis, identified using a novel approach termed reverse antigen screening, elicited strong cellular immunity in dogs. Immunization with either molecule induced high IgG2 antibody levels and significant IFN-γ production following in vitro stimulation of PBMC with salivary gland homogenate (SGH). Upon challenge with uninfected or infected flies, immunized dogs developed a cellular response at the bite site characterized by lymphocytic infiltration and IFN-γ and IL-12 expression. Additionally, SGH-stimulated lymphocytes from immunized dogs efficiently killed Leishmania infantum chagasi within autologous macrophages. Certain sand fly salivary proteins are potent immunogens obligatorily co-deposited with Leishmania parasites during transmission. Their inclusion in an anti-Leishmania vaccine would exploit anti-saliva immunity following an infective sand fly bite and set the stage for a protective anti-Leishmania immune response.

140 citations

Journal ArticleDOI
TL;DR: Salivary recombinant proteins are of value as markers of vector exposure in humans and of sand fly exposure in dogs.
Abstract: BACKGROUND: Sand flies deliver Leishmania parasites to a host alongside salivary molecules that affect infection outcomes. Though some proteins are immunogenic and have potential as markers of vector exposure, their identity and vector specificity remain elusive. METHODOLOGY/PRINCIPAL FINDINGS: We screened human, dog, and fox sera from endemic areas of visceral leishmaniasis to identify potential markers of specific exposure to saliva of Lutzomyia longipalpis. Human and dog sera were further tested against additional sand fly species. Recombinant proteins of nine transcripts encoding secreted salivary molecules of Lu. longipalpis were produced, purified, and tested for antigenicity and specificity. Use of recombinant proteins corresponding to immunogenic molecules in Lu. longipalpis saliva identified LJM17 and LJM11 as potential markers of exposure. LJM17 was recognized by human, dog, and fox sera; LJM11 by humans and dogs. Notably, LJM17 and LJM11 were specifically recognized by humans exposed to Lu. longipalpis but not by individuals exposed to Lu. intermedia. CONCLUSIONS/SIGNIFICANCE: Salivary recombinant proteins are of value as markers of vector exposure. In humans, LJM17 and LJM11 emerged as potential markers of specific exposure to Lu. longipalpis, the vector of Leishmania infantum chagasi in Latin America. In dogs, LJM17, LJM11, LJL13, LJL23, and LJL143 emerged as potential markers of sand fly exposure. Testing these recombinant proteins in large scale studies will validate their usefulness as specific markers of Lu. longipalpis exposure in humans and of sand fly exposure in dogs.

104 citations

Journal ArticleDOI
TL;DR: It is demonstrated that LJM11 confers protective immunity against Leishmania major infection and correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva.

100 citations

Journal ArticleDOI
TL;DR: Salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme, and Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities.
Abstract: Objective—Blood-sucking arthropods’ salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. Methods and Results—Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin’s primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈...

60 citations

Journal ArticleDOI
TL;DR: The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for detecting the presence of small numbers of different species of triatomines and could be developed for use as a new tool in surveillance programs, especially to corroborate vector elimination in Chagas disease vector control campaigns.
Abstract: Background Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans. Methodology/Principal Findings T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia. Conclusions/Significance The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for detecting the presence of small numbers of different species of triatomines and could be developed for use as a new tool in surveillance programs, especially to corroborate vector elimination in Chagas disease vector control campaigns.

35 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The coevolution of sand flies with Leishmania species of mammals and lizards is considered in relation to the landscape epidemiology of leishmaniasis, a neglected tropical disease.
Abstract: Phlebotomines are the sole or principal vectors of Leishmania, Bartonella bacilliformis, and some arboviruses. The coevolution of sand flies with Leishmania species of mammals and lizards is considered in relation to the landscape epidemiology of leishmaniasis, a neglected tropical disease. Evolutionary hypotheses are unresolved, so a practical phlebotomine classification is proposed to aid biomedical information retrieval. The vectors of Leishmania are tabulated and new criteria for their incrimination are given. Research on fly-parasite-host interactions, fly saliva, and behavioral ecology is reviewed in relation to parasite manipulation of blood feeding, vaccine targets, and pheromones for lures. Much basic research is based on few transmission cycles, so generalizations should be made with caution. Integrated research and control programs have begun, but improved control of leishmaniasis and nuisance-biting requires greater emphasis on population genetics and transmission modeling. Most leishmaniasis transmission is zoonotic, affecting the poor and tourists in rural and natural areas, and therefore control should be compatible with environmental conservation.

426 citations

Journal ArticleDOI
21 Dec 2011-PLOS ONE
TL;DR: This data set of proteins constitutes a mining platform for novel pharmacologically active proteins and for uncovering vaccine targets against A. maculatum and the diseases they carry.
Abstract: Background Saliva of blood sucking arthropods contains compounds that antagonize their hosts' hemostasis, which include platelet aggregation, vasoconstriction and blood clotting; saliva of these organisms also has anti-inflammatory and immunomodullatory properties. Perhaps because hosts mount an active immune response against these compounds, the diversity of these compounds is large even among related blood sucking species. Because of these properties, saliva helps blood feeding as well as help the establishment of pathogens that can be transmitted during blood feeding. Methodology/Principal Findings We have obtained 1,626,969 reads by pyrosequencing a salivary gland cDNA library from adult females Amblyomma maculatum ticks at different times of feeding. Assembly of this data produced 72,441 sequences larger than 149 nucleotides from which 15,914 coding sequences were extracted. Of these, 5,353 had >75% coverage to their best match in the non-redundant database from the National Center for Biotechnology information, allowing for the deposition of 4,850 sequences to GenBank. The annotated data sets are available as hyperlinked spreadsheets. Putative secreted proteins were classified in 133 families, most of which have no known function. Conclusions/Significance This data set of proteins constitutes a mining platform for novel pharmacologically active proteins and for uncovering vaccine targets against A. maculatum and the diseases they carry.

202 citations

Journal ArticleDOI
TL;DR: A thorough understanding of protective immune responses and generation and maintenance of the immunological memory, the most important and least-studied aspect of antiparasitic vaccine development, during Leishmania infection is needed.
Abstract: Leishmaniasis is a disease that ranges in severity from skin lesions to serious disfigurement and fatal systemic infection. WHO has classified the disease as emerging and uncontrolled and estimates that the infection results in two million new cases a year. There are 12 million people currently infected worldwide, and leishmaniasis threatens 350 million people in 88 countries. Current treatment is based on chemotherapy, which relies on a handful of drugs with serious limitations such as high cost, toxicity, difficult route of administration and lack of efficacy in endemic areas. Vaccination remains the best hope for control of all forms of the disease, and the development of a safe, effective and affordable antileishmanial vaccine is a critical global public-health priority. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunization with defined subunit vaccines or live-attenuated strains of Leishmania. However, to date, no such vaccine is available despite substantial efforts by many laboratories. The major impediment in vaccine design is the translation of data from animal models to human disease, and the transition from the laboratory to the field. Furthermore, a thorough understanding of protective immune responses and generation and maintenance of the immunological memory, the most important and least-studied aspect of antiparasitic vaccine development, during Leishmania infection is needed. This review focuses on recent findings in antileishmania vaccine field and highlights current difficulties facing vaccine development and implementation.

187 citations

Journal ArticleDOI
TL;DR: Thrombin exerts a number of additional biological actions, including platelet activation, amplification and self-inhibition of coagulation, clot stabilisation and anti-fibrinolysis, in processes occurring in the proximity of vessel injury, tightly regulated by a series of inhibitory mechanisms.
Abstract: Contrary to previous models based on plasma, coagulation processes are currently believed to be mostly cell surface-based, including three overlapping phases: initiation, when tissue factor-expressing cells and microparticles are exposed to plasma; amplification, whereby small amounts of thrombin induce platelet activation and aggregation, and promote activation of factors (F)V, FVIII and FXI on platelet surfaces; and propagation, in which the Xase (tenase) and prothrombinase complexes are formed, producing a burst of thrombin and the cleavage of fibrinogen to fibrin. Thrombin exerts a number of additional biological actions, including platelet activation, amplification and self-inhibition of coagulation, clot stabilisation and anti-fibrinolysis, in processes occurring in the proximity of vessel injury, tightly regulated by a series of inhibitory mechanisms. "Classical" anticoagulants, including heparin and vitamin K antagonists, typically target multiple coagulation steps. A number of new anticoagulants, already developed or under development, target specific steps in the process, inhibiting a single coagulation factor or mimicking natural coagulation inhibitors.

170 citations

Journal ArticleDOI
TL;DR: Research on major royal jelly proteins in honeybees and in hymenopteran insects in general is reviewed and metadata analyses on genome organisation of mrjp genes are provided, corroborating previous reports that MRJPs have important functions for insect development and not just a nutritional value for developing honeybee larvae.
Abstract: In the honeybee, Apis mellifera, the queen larvae are fed with a diet exclusively composed of royal jelly (RJ), a secretion of the hypopharyngeal gland of young worker bees that nurse the brood. Up to 15% of RJ is composed of proteins, the nine most abundant of which have been termed major royal jelly proteins (MRJPs). Although it is widely accepted that RJ somehow determines the fate of a female larva and in spite of considerable research efforts, there are surprisingly few studies that address the biochemical characterisation and functions of these MRJPs. Here we review the research on MRJPs not only in honeybees but in hymenopteran insects in general and provide metadata analyses on genome organisation of mrjp genes, corroborating previous reports that MRJPs have important functions for insect development and not just a nutritional value for developing honeybee larvae.

166 citations