scispace - formally typeset
Search or ask a question
Author

Nicolas Curien

Bio: Nicolas Curien is an academic researcher from Institut Universitaire de France. The author has contributed to research in topics: Almost surely & Scaling limit. The author has an hindex of 25, co-authored 108 publications receiving 1756 citations. Previous affiliations of Nicolas Curien include Centre national de la recherche scientifique & Dallas Museum of Art.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors adapt the entropy technique developed for Cayley graphs and show that stationary random graphs of subexponential growth are almost surely Liouville, that is, admit no non constant bounded harmonic functions.
Abstract: A stationary random graph is a random rooted graph whose distribution is invariant under re-rooting along the simple random walk. We adapt the entropy technique developed for Cayley graphs and show in particular that stationary random graphs of subexponential growth are almost surely Liouville, that is, admit no non constant bounded harmonic functions. Applications include the uniform infinite planar quadrangulation and long-range percolation clusters.

115 citations

Journal ArticleDOI
TL;DR: Stable looptrees are universal scaling limits, for the Gromov-Hausdorff topology, of various combinatorial models and it is proved that the stable looptree of parameter $3}{2}$ is the scaling limit of cluster boundaries in critical site-percolation on large random triangulations.
Abstract: We introduce a class of random compact metric spaces $\mathscr{L}_{\alpha}$ indexed by $\alpha~\in(1,2)$ and which we call stable looptrees. They are made of a collection of random loops glued together along a tree structure, and can be informally be viewed as dual graphs of $\alpha$-stable Levy trees. We study their properties and prove in particular that the Hausdorff dimension of $ \mathscr{L}_{\alpha}$ is almost surely equal to $\alpha$. We also show that stable looptrees are universal scaling limits, for the Gromov-Hausdorff topology, of various combinatorial models. In a companion paper, we prove that the stable looptree of parameter $ \frac{3}{2}$ is the scaling limit of cluster boundaries in critical site-percolation on large random triangulations.

74 citations

Journal ArticleDOI
TL;DR: The Brownian plane as discussed by the authors is the scaling limit of the uniform infinite planar quadrangulation, and it is homeomorphic to the Euclidean plane and geodesic rays to infinity.
Abstract: We introduce and study the random non-compact metric space called the Brownian plane, which is obtained as the scaling limit of the uniform infinite planar quadrangulation. Alternatively, the Brownian plane is identified as the Gromov–Hausdorff tangent cone in distribution of the Brownian map at its root vertex, and it also arises as the scaling limit of uniformly distributed (finite) planar quadrangulations with $$n$$ faces when the scaling factor tends to $$0$$ less fast than $$n^{-1/4}$$ . We discuss various properties of the Brownian plane. In particular, we prove that the Brownian plane is homeomorphic to the plane, and we get detailed information about geodesic rays to infinity.

72 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore the map along an SLE (Schramm-Loewner evolution) process of parameter \({ \kappa = 6}\) and combine the locality property of SLE6 together with the spatial Markov property of the underlying lattice in order to get a non-trivial geometric information.
Abstract: We present a way to study the conformal structure of random planar maps. The main idea is to explore the map along an SLE (Schramm–Loewner evolution) process of parameter \({ \kappa = 6}\) and to combine the locality property of the SLE6 together with the spatial Markov property of the underlying lattice in order to get a non-trivial geometric information. We follow this path in the case of the conformal structure of random triangulations with a boundary.

61 citations

Journal Article
TL;DR: In this article, a new construction of the Uniform Infinite Planar Quadrangulation (UIPQ) is introduced, based on an extension of the Cori-Vauquelin-Schaeffer mapping in the context of infinite trees.
Abstract: We introduce a new construction of the Uniform Infinite Planar Quadrangulation (UIPQ). Our approach is based on an extension of the Cori-Vauquelin-Schaeffer mapping in the context of infinite trees, in the spirit of previous work on this topic. However, we release the positivity constraint on the labels of trees which was imposed so far, so that our construction is technically much simpler. This approach allows us to prove the conjectures of Krikun pertaining to the "geometry at infinity" of the UIPQ, and to derive new results about the UIPQ, among which a fine study of infinite geodesics.

58 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Convergence of Probability Measures as mentioned in this paper is a well-known convergence of probability measures. But it does not consider the relationship between probability measures and the probability distribution of probabilities.
Abstract: Convergence of Probability Measures. By P. Billingsley. Chichester, Sussex, Wiley, 1968. xii, 253 p. 9 1/4“. 117s.

5,689 citations

Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

Book
20 Jan 2017
TL;DR: In this article, the authors present a state-of-the-art account of probability on networks, including percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks.
Abstract: Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks. Written by two leading researchers, the text emphasizes intuition, while giving complete proofs and more than 850 exercises. Many recent developments, in which the authors have played a leading role, are discussed, including percolation on trees and Cayley graphs, uniform spanning forests, the mass-transport technique, and connections on random walks on graphs to embedding in Hilbert space. This state-of-the-art account of probability on networks will be indispensable for graduate students and researchers alike.

803 citations