scispace - formally typeset
Search or ask a question
Author

Nicolas Morel

Bio: Nicolas Morel is an academic researcher. The author has contributed to research in topics: Inflammation & Blood transfusion. The author has an hindex of 6, co-authored 13 publications receiving 552 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A number of pieces of evidence points to procoagulant MPs as efficient effectors in the haemostatic response, and as pathogenic markers of thrombotic disorders and vascular damage.
Abstract: Described 40 years ago as cell dust, microparticles (MPs) are now considered a key component in the haemostatic response. Owing to their plasma membrane reactivity, platelets are believed to constitute the main source of circulating procoagulant microparticles and behave as true sensors for the haemostatic response. Erythrocytes, leukocytes and endothelial cells are also able to shed MPs in the blood flow, their respective contribution varying with the pathophysiologic circumstances and extent of the cellular damage. The catalytic properties of MPs rely on a procoagulant anionic phospholipid, phosphatidylserine, made accessible at the outer leaflet following plasma membrane remodelling and on the eventual presence of tissue factor (TF). Under resting conditions, most membrane-bound TF is encrypted. Although able to bind to FVIIa, it does not trigger blood coagulation. Under prothrombotic conditions, TF decryption would occur through intricate pathways involving platelets, monocytes, endothelial cells and derived MPs. P-selectin/P-selectin glycoprotein Ligand-1 (PSGL-1) interactions and reactive oxygen species would promote TF decryption in cell-MP aggregates. At sites of endothelium injury, the swift recruitment of TF+-MPs through P-selectin/PSGL-1 interactions enables the concentration of TF activity above a threshold allowing coagulation to be triggered. Another crucial feature in the initiation of blood coagulation, possibly tuned by MPs, is the balance between TF and TFPI. In specific pathophysiologic contents with elevated levels of circulating TF+-MPs, accessible TFPI at the MP surface would be overwhelmed. Beyond their procoagulant properties demonstrated in vitro, a number of pieces of evidence points to procoagulant MPs as efficient effectors in the haemostatic response, and as pathogenic markers of thrombotic disorders and vascular damage. This review will focus on the pathophysiological significance of platelet-derived MPs and their interaction with vascular cells.

143 citations

Journal ArticleDOI
TL;DR: Owing to their ability to cargo bioactive signals, MPs could be viewed as an integrated communication network enabling the coordination of complex cellular responses in biological fluids and the maintenance of the homeostasis equation.
Abstract: Plasma membrane remodeling characterized by phosphatidylserine exposure and consecutive microparticle (MP) shedding is an ubiquitous process enabling the clearance of senescent cells and the maintenance of tissue homeostasis. MPs are released as fragments from the budding plasma membrane of virtually all eukaryotic cell types undergoing stimulation or apoptosis and may be considered a broad primitive response to stress. MP release is dependent on cytoskeleton degradation pathways involving caspases, requires a sustained increase in intracellular calcium triggering K+ and Cl- efflux and is possibly tuned by mitochondria permeability changes. Because they convey a broad spectrum of bioactive molecules, circulating MPs may serve as shuttles promoting cellular cross talk in various pathological settings such as inflammation or immunity-induced thrombotic disorders. If the drastic shedding of procoagulant MPs appears clearly noxious in thrombotic disorders or in some models of inflammation-induced coagulopathy, this does not necessarily endorse their invariably harmful nature. In the vessel, endothelial cytoprotection reported in the early regulation of inflammation-induced coagulopathy is emblematic of the beneficial effects provided by MPs. In addition, MPs would prove beneficial in the prevention of blood leakage. Because of their multiple properties that are characteristic of a private response of the parental cell, MPs could act as cytoprotective and anti-inflammatory agents through the delivery of activated protein C or annexin 1 and could contribute to the limitation of vascular hyporeactivity. Owing to their ability to cargo bioactive signals, MPs could be viewed as an integrated communication network enabling the coordination of complex cellular responses in biological fluids and the maintenance of the homeostasis equation. A better understanding of the molecular mechanisms involved in MP shedding would pave the way of a new pharmacological approach aiming at the control of MP-driven cellular responses.

138 citations

Journal ArticleDOI
TL;DR: Procoagulant MP testifying to platelet and endothelial activation are produced in the CSF and in the plasma after severe TBI, which could contribute to a poor clinical outcome.
Abstract: Background: Traumatic brain injury (TBI) can induce cell damage. Procoagulant microparticles (MPs) are reliable markers of cell stimulation. The aim of this study was to investigate the generation of procoagulant MPs in the cerebrospinal fluid (CSF) and plasma of patients with severe TBI. Material: CSF and plasma MPs of 16 patients with severe TBI were quantified by functional prothrombinase assay (i) on the day of the trauma, (ii) during a 10-day follow-up and compared with control samples. The cellular origin of MP was determined after capture with specific antibodies. Results: The CSF and plasma of patients with severe TBI revealed a significantly increased generation of MP compared with control samples on the day of the trauma (CSF: 4.5 ± 1.8 vs. 0.83 ± 0.28 nanomolar PhtdSer equivalent; p = 0.01 and plasma 4.1 ± 3.7 vs. 2.3 ± 0.19 nanomolar PhtdSer equivalent; p = 0.02). Procoagulant MPs were mainly of platelet and endothelial origin in CSF. MPs decreased significantly in the CSF 10 days after TBI. In CSF, a sustained generation of procoagulant MP was evidenced in two patients presenting a poor clinical outcome. In the blood flow, elevated amounts of procoagulant MPs were detected in three patients presenting disseminated intravascular coagulopathy during the follow-up. Conclusion: Procoagulant MP testifying to platelet and endothelial activation are produced in the CSF and in the plasma after severe TBI. A sustained generation of procoagulant MP in the CSF could contribute to a poor clinical outcome.

108 citations

Journal ArticleDOI
TL;DR: In an emergency setting, this new ultraportable echoscope (PUD) was reliable for the real-time detection of focused cardiac abnormalities.
Abstract: Introduction In the emergency setting, focused cardiac ultrasound has become a fundamental tool for diagnostic, initial emergency treatment and triage decisions. A new ultra-miniaturized pocket ultrasound device (PUD) may be suited to this specific setting. Therefore, we aimed to compare the diagnostic ability of an ultra-miniaturized ultrasound device (Vscan™, GE Healthcare, Wauwatosa, WI) and of a conventional high-quality echocardiography system (Vivid S5™, GE Healthcare) for a cardiac focused ultrasonography in patients admitted to the emergency department.

78 citations

Journal ArticleDOI
TL;DR: In this perspective article, Dr. Morel and co-workers discuss the biological and clinical significance of microparticles in endothelial cells.
Abstract: Endothelial damage and release of membrane microparticles are key steps in the pathogenesis of inflammation, in the broad acceptance of the term.[1][1],[2][2] At the site of endothelium injury, secretion of pro-inflammatory cytokines and expression of cytoadhesins by endothelial cells are well-

67 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This transcellular delivery system may extend the confines of the limited transcriptome and proteome of recipient cells and establishes a communication network in which specific properties and information among cells can be efficiently shared.
Abstract: Microparticles represent a heterogeneous population of vesicles with a diameter of 100 to 1000 nm that are released by budding of the plasma membrane and express antigens specific of their parental cells. Although microparticle formation represents a physiological phenomenon, a multitude of pathologies are associated with a considerable increase in circulating microparticles, including inflammatory and autoimmune diseases, atherosclerosis, and malignancies. Microparticles display an broad spectrum of bioactive substances and receptors on their surface and harbor a concentrated set of cytokines, signaling proteins, mRNA, and microRNA. Recent studies provided evidence for the concept of microparticles as veritable vectors for the intercellular exchange of biological signals and information. Indeed, microparticles may transfer part of their components and content to selected target cells, thus mediating cell activation, phenotypic modification, and reprogramming of cell function. Because microparticles readily circulate in the vasculature, they may serve as shuttle modules and signaling transducers not only in their local environment but also at remarkable distance from their site of origin. Altogether, this transcellular delivery system may extend the confines of the limited transcriptome and proteome of recipient cells and establishes a communication network in which specific properties and information among cells can be efficiently shared. At least in same cases, the sequential steps of the transfer process underlie complex regulatory mechanisms, including selective sorting ("packaging") of microparticle components and content, specificity of interactions with target cells determined by surface receptors, and ultimately finely tuned and signal-dependent release and delivery of microparticle content.

760 citations

Journal ArticleDOI
TL;DR: It is shown that neutrophils isolated from type 1 and type 2 diabetic humans and mice were primed to produce NETs (a process termed NETosis), and wound healing was accelerated in Padi4−/− mice as compared to WT mice, and it was not compromised by diabetes.
Abstract: Wound healing is impaired in diabetes, resulting in significant morbidity and mortality. Neutrophils are the main leukocytes involved in the early phase of healing. As part of their anti-microbial defense, neutrophils form extracellular traps (NETs) by releasing decondensed chromatin lined with cytotoxic proteins. NETs, however, can also induce tissue damage. Here we show that neutrophils isolated from type 1 and type 2 diabetic humans and mice were primed to produce NETs (a process termed NETosis). Expression of peptidylarginine deiminase 4 (PAD4, encoded by Padi4 in mice), an enzyme important in chromatin decondensation, was elevated in neutrophils from individuals with diabetes. When subjected to excisional skin wounds, wild-type (WT) mice produced large quantities of NETs in wounds, but this was not observed in Padi4(-/-) mice. In diabetic mice, higher levels of citrullinated histone H3 (H3Cit, a NET marker) were found in their wounds than in normoglycemic mice and healing was delayed. Wound healing was accelerated in Padi4(-/-) mice as compared to WT mice, and it was not compromised by diabetes. DNase 1, which disrupts NETs, accelerated wound healing in diabetic and normoglycemic WT mice. Thus, NETs impair wound healing, particularly in diabetes, in which neutrophils are more susceptible to NETosis. Inhibiting NETosis or cleaving NETs may improve wound healing and reduce NET-driven chronic inflammation in diabetes.

743 citations

Journal ArticleDOI
TL;DR: This review focuses on the ambivalent role of EMP in vascular homeostasis and investigates whether EMP could promote cell survival, exert antiinflammatory effects, counteract coagulation processes, or induce endothelial regeneration.
Abstract: Endothelial microparticles (EMP) are complex vesicular structures shed from activated or apoptotic endothelial cells. They play a remarkable role in coagulation, inflammation, endothelial function, and angiogenesis and thus disturb the vascular homeostasis, contributing to the progression of vascular diseases. As a cause or a consequence, elevated levels of EMP were found in plasma from patients with vascular diseases, where they serve as a surrogate marker of endothelial function. More recent data challenged the presumed deleterious role of EMP because they could promote cell survival, exert antiinflammatory effects, counteract coagulation processes, or induce endothelial regeneration. This review focuses on the ambivalent role of EMP in vascular homeostasis.

573 citations

Journal ArticleDOI
TL;DR: Because PS exposure is a key feature in pathological processes different from hemostasis and thrombosis, the most important obstacle in the field of MP-modulating drugs seems to be carefully targeting MP release to relevant cell types at an optimal level, so as to achieve a beneficial action and limit possible adverse effects.
Abstract: Microparticles (MPs) derived from platelets, monocytes, endothelial cells, red blood cells, and granulocytes may be detected in low concentrations in normal plasma and at increased levels in atherothrombotic cardiovascular diseases. The elucidation of the cellular mechanisms underlying the generation of circulating MPs is crucial for improving our understanding of their pathophysiological role in health and disease. The flopping of phosphatidylserine (PS) to the outer leaflet of the plasma membrane is the key event that will ultimately lead to the shedding of procoagulant MPs from activated or apoptotic cells. Research over the last few years has revealed important roles for calcium-, mitochondrial-, and caspase-dependent mechanisms leading to PS exposure. The study of Scott cells has unraveled different molecular mechanisms that may contribute to fine-tuning of PS exposure and MP release in response to a variety of specific stimuli. The pharmacological modulation of MP release may have a substantial therapeutic impact in the management of atherothrombotic vascular disorders. Because PS exposure is a key feature in pathological processes different from hemostasis and thrombosis, the most important obstacle in the field of MP-modulating drugs seems to be carefully targeting MP release to relevant cell types at an optimal level, so as to achieve a beneficial action and limit possible adverse effects.

449 citations

Journal ArticleDOI
TL;DR: The role of microvesicles and exosomes from various cellular origins in angiogenesis is reviewed, with a particular emphasis on the underlying mechanisms, and the main challenges and prerequisites for their therapeutic applications are discussed.
Abstract: During the past decade, extracellular vesicles (EVs), which include apoptotic bodies, microvesicles, and exosomes, have emerged as important players in cell-to-cell communication in normal physiology and pathological conditions. EVs encapsulate and convey various bioactive molecules that are further transmitted to neighboring or more distant cells, where they induce various signaling cascades. The message delivered to the target cells is dependent on EV composition, which, in turn, is determined by the cell of origin and the surrounding microenvironment during EV biogenesis. Among their multifaceted role in the modulation of biological responses, the involvement of EVs in vascular development, growth, and maturation has been widely documented and their potential therapeutic application in regenerative medicine or angiogenesis-related diseases is drawing increasing interest. EVs derived from various cell types have the potential to deliver complex information to endothelial cells and to induce either pro- or antiangiogenic signaling. As dynamic systems, in response to changes in the microenvironment, EVs adapt their cargo composition to fine-tune the process of blood vessel formation. This article reviews the current knowledge on the role of microvesicles and exosomes from various cellular origins in angiogenesis, with a particular emphasis on the underlying mechanisms, and discusses the main challenges and prerequisites for their therapeutic applications.

406 citations