scispace - formally typeset
Search or ask a question
Author

Nicolas Paparoditis

Bio: Nicolas Paparoditis is an academic researcher from University of Paris. The author has contributed to research in topics: Point cloud & Mobile mapping. The author has an hindex of 22, co-authored 112 publications receiving 1777 citations. Previous affiliations of Nicolas Paparoditis include Institut géographique national & Cergy-Pontoise University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, state-of-the-art methods on shadow detection were surveyed and categorized into six classes: histogram thresholding, invariant color models, object segmentation, geometrical methods, physics-based methods, unsupervised and supervised machine learning methods.
Abstract: Automatic shadow detection is a very important pre-processing step for many remote sensing applications, particularly for images acquired with high spatial resolution. In complex urban environments, shadows may occupy a significant portion of the image. Ignoring these regions would lead to errors in various applications, such as atmospheric correction and classification. To better understand the radiative impact of shadows, a physical study was conducted through the simulation of a synthetic urban canyon scene. Its results helped to explain the most common assumptions made on shadows from a physical point of view in the literature. With this understanding, state-of-the-art methods on shadow detection were surveyed and categorized into six classes: histogram thresholding, invariant color models, object segmentation, geometrical methods, physics-based methods, unsupervised and supervised machine learning methods. Among them, some methods were selected and tested on a large dataset of multispectral and hyperspectral airborne images with high spatial resolution. The dataset chosen contains a large variety of typical occidental urban scenes. The results were compared based on accurate reference shadow masks. In these experiments, histogram thresholding on RGB and NIR channels performed the best with an average accuracy of 92.5%, followed by physics-based methods, such as Richter’s method with 90.0%. Finally, this paper analyzes and discusses the limits of these algorithms, concluding with some recommendations for shadow detection.

180 citations

Journal ArticleDOI
TL;DR: A very detailed semantic tree for urban scenes is proposed and the capacity of a method to separate the points of the scene into these categories is called analysis, which aims at evaluating the classification, detection and segmentation quality of the submitted results.

150 citations

Journal ArticleDOI
19 Apr 2014
TL;DR: In this article, a system for numerisation mobile 3D hybride laser-image is presented, which permet d'acquerir des infrastructures de donnees spatiales repondant aux besoins d'applications diverses allant de navigations multimedia immersives jusqua de la metrologie 3D a travers le web.
Abstract: Nous presentons dans cet article un systeme de numerisation mobile 3D hybride laser-image qui permet d’acquerir des infrastructures de donnees spatiales repondant aux besoins d’applications diverses allant de navigations multimedia immersives jusqu’a de la metrologie 3D a travers le web. Nous detaillons la conception du systeme, ses capteurs, son architecture et sa calibration, ainsi qu’un service web offrant la possibilite de saisir en 3D via un outil de type SaaS (Software as a Service), permettant a tout un chacun d’enrichir ses propres bases de donnees a hauteur de ses besoins. Nous abordons egalement l’anonymisation des donnees, a savoir la detection et le floutage de plaques d’immatriculation, qui est est une etape inevitable pour la diffusion de ces donnees sur Internet via des applications grand public.

118 citations

Journal ArticleDOI
TL;DR: The significant challenges currently facing ISPRS and its communities are examined, such as providing high-quality information, enabling advanced geospatial computing, and supporting collaborative problem solving.
Abstract: With the increased availability of very high-resolution satellite imagery, terrain based imaging and participatory sensing, inexpensive platforms, and advanced information and communication technologies, the application of imagery is now ubiquitous, playing an important role in many aspects of life and work today. As a leading organisation in this field, the International Society for Photogrammetry and Remote Sensing (ISPRS) has been devoted to effectively and efficiently obtaining and utilising information from imagery since its foundation in the year 1910. This paper examines the significant challenges currently facing ISPRS and its communities, such as providing high-quality information, enabling advanced geospatial computing, and supporting collaborative problem solving. The state-of-the-art in ISPRS related research and development is reviewed and the trends and topics for future work are identified. By providing an overarching scientific vision and research agenda, we hope to call on and mobilise all ISPRS scientists, practitioners and other stakeholders to continue improving our understanding and capacity on information from imagery and to deliver advanced geospatial knowledge that enables humankind to better deal with the challenges ahead, posed for example by global change, ubiquitous sensing, and a demand for real-time information generation.

92 citations

Proceedings ArticleDOI
23 Aug 2010
TL;DR: This paper compares, on the same ground-truth image database, results obtained by three algorithms that sample different state-of-the-art approaches for road sign detection: Contour Fitting, Radial Symmetry Transform, and pair-wise voting scheme.
Abstract: Road sign identification in images is an important issue, in particular for vehicle safety applications. It is usually tackled in three stages: detection, recognition and tracking, and evaluated as a whole. To progress towards better algorithms, we focus in this paper on the first stage of the process, namely road sign detection. More specifically, we compare, on the same ground-truth image database, results obtained by three algorithms that sample different state-of-the-art approaches. The three tested algorithms: Contour Fitting, Radial Symmetry Transform, and pair-wise voting scheme, all use color and edge information and are based on geometrical models of road signs. The test dataset is made of 847 images 960x1080 of complex urban scenes (available at www.itowns.fr/benchmarking.html). They feature 251 road signs of different shapes (circular, rectangular, triangular), sizes and types. The pros and cons of the three algorithms are discussed, allowing to draw new research perspectives.

82 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI

6,278 citations

01 Jan 1979
TL;DR: This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis and addressing interesting real-world computer Vision and multimedia applications.
Abstract: In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes contain a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with Shared Information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different level of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems. This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis. Both state-of-the-art works, as well as literature reviews, are welcome for submission. Papers addressing interesting real-world computer vision and multimedia applications are especially encouraged. Topics of interest include, but are not limited to: • Multi-task learning or transfer learning for large-scale computer vision and multimedia analysis • Deep learning for large-scale computer vision and multimedia analysis • Multi-modal approach for large-scale computer vision and multimedia analysis • Different sharing strategies, e.g., sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, • Real-world computer vision and multimedia applications based on learning with shared information, e.g., event detection, object recognition, object detection, action recognition, human head pose estimation, object tracking, location-based services, semantic indexing. • New datasets and metrics to evaluate the benefit of the proposed sharing ability for the specific computer vision or multimedia problem. • Survey papers regarding the topic of learning with shared information. Authors who are unsure whether their planned submission is in scope may contact the guest editors prior to the submission deadline with an abstract, in order to receive feedback.

1,758 citations

Book
01 Dec 1988
TL;DR: In this paper, the spectral energy distribution of the reflected light from an object made of a specific real material is obtained and a procedure for accurately reproducing the color associated with the spectrum is discussed.
Abstract: This paper presents a new reflectance model for rendering computer synthesized images. The model accounts for the relative brightness of different materials and light sources in the same scene. It describes the directional distribution of the reflected light and a color shift that occurs as the reflectance changes with incidence angle. The paper presents a method for obtaining the spectral energy distribution of the light reflected from an object made of a specific real material and discusses a procedure for accurately reproducing the color associated with the spectral energy distribution. The model is applied to the simulation of a metal and a plastic.

1,401 citations

Journal ArticleDOI
TL;DR: This paper presents a comprehensive review of recent progress in deep learning methods for point clouds, covering three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation.
Abstract: Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions

1,021 citations