scispace - formally typeset
Search or ask a question
Author

Nicolas Wiest-Daesslé

Bio: Nicolas Wiest-Daesslé is an academic researcher from University of Rennes. The author has contributed to research in topics: Diffusion MRI & Tractography. The author has an hindex of 8, co-authored 14 publications receiving 637 citations.

Papers
More filters
Book ChapterDOI
06 Sep 2008
TL;DR: This adaptation outperforms the original NLMeans filter in terms of peak-signal-to-noise ratio (PSNR) for DW-MRI.
Abstract: Diffusion-Weighted MRI (DW-MRI) is subject to random noise yielding measures that are different from their real values, and thus biasing the subsequently estimated tensors The Non-Local Means (NLMeans) filter has recently been proposed to denoise MRI with high signal-to-noise ratio (SNR) This filter has been shown to allow the best restoration of image intensities for the estimation of diffusion tensors (DT) compared to state-of-the-art methods However, for DW-MR images with high b-values (and thus low SNR), the noise, which is strictly Rician-distributed, can no longer be approximated as additive white Gaussian, as implicitly assumed in the classical formulation of the NLMeans High b-values are typically used in high angular resolution diffusion imaging (HARDI) or q-space imaging (QSI), for which an optimal restoration is critical In this paper, we propose to adapt the NLMeans filter to Rician noise corrupted data Validation is performed on synthetic data and on real data for both conventional MR images and DT images Our adaptation outperforms the original NLMeans filter in terms of peak-signal-to-noise ratio (PSNR) for DW-MRI

287 citations

Book ChapterDOI
06 Sep 2008
TL;DR: The results suggest that the NLMr filtering improve the quality of anisotropy maps computed from ADC and ODF and improve the coherence of q-ball ODFs with the underlying anatomy while not degrading angular resolution.
Abstract: In this paper we study the impact of denoising the raw high angular resolution diffusion imaging (HARDI) data with the Non-Local Means filter adapted to Rician noise (NLMr). We first show that NLMr filtering improves robustness of apparent diffusion coefficient (ADC) and orientation distribution function (ODF) reconstructions from synthetic HARDI datasets. Our results suggest that the NLMr filtering improve the quality of anisotropy maps computed from ADC and ODF and improve the coherence of q-ball ODFs with the underlying anatomy while not degrading angular resolution. These results are shown on a biological phantom with known ground truth and on a real human brain dataset. Most importantly, we show that multiple measurements of diffusion-weighted (DW) images and averaging these images along each direction can be avoided because NLMr filtering of the individual DW images produces better quality generalized fractional anisotropy maps and more accurate ODF fields than when computed from the averaged DW datasets.

117 citations

Book ChapterDOI
29 Oct 2007
TL;DR: The results show that the intensity based NL-means approaches give better results in the context of DT-MRI than other classical denoising methods, such as Gaussian Smoothing, Anisotropic Diffusion and Total Variation.
Abstract: Diffusion tensor imaging (DT-MRI) is very sensitive to corrupting noise due to the non linear relationship between the diffusion-weighted image intensities (DW-MRI) and the resulting diffusion tensor. Denoising is a crucial step to increase the quality of the estimated tensor field. This enhanced quality allows for a better quantification and a better image interpretation. The methods proposed in this paper are based on the Non-Local (NL) means algorithm. This approach uses the natural redundancy of information in images to remove the noise. We introduce three variations of the NL-means algorithms adapted to DW-MRI and to DT-MRI. Experiments were carried out on a set of 12 diffusion-weighted images (DW-MRI) of the same subject. The results show that the intensity based NL-means approaches give better results in the context of DT-MRI than other classical denoising methods, such as Gaussian Smoothing, Anisotropic Diffusion and Total Variation.

88 citations

Proceedings ArticleDOI
02 May 2012
TL;DR: A new block-matching strategy for rigid-body registration of multimodal or multisequence medical images by replacing the original, computationally expensive, exhaustive search over translations by a more efficient optimization over rigid- body transformations.
Abstract: We propose and evaluate a new block-matching strategy for rigid-body registration of multimodal or multisequence medical images. The classical algorithm first matches points of both images by maximizing the iconic similarity of blocks of voxels around them, then estimates the rigid-body transformation best superposing these matched pairs of points, and iterates these two steps until convergence. In this formulation, only discrete translations are investigated in the block-matching step, which is likely to cause several problems, most notably a difficulty to tackle large rotations and to recover subvoxel transformations. We propose a solution to these two problems by replacing the original, computationally expensive, exhaustive search over translations by a more efficient optimization over rigid-body transformations. The optimal global transformation is then computed based on these local blockwise rigid-body transformations, and these two steps are iterated until convergence. We evaluate the accuracy, robustness, capture range and run time of this new block-matching algorithm on both synthetic and real MRI and PET data, demonstrating faster and better registration than the translation-based block-matching algorithm.

67 citations

Book ChapterDOI
01 Oct 2012
TL;DR: An iterative two-step method to compute a diffeomorphic non-rigid transformation between images of anatomical structures with rigid parts, without any user intervention or prior knowledge on the image intensities is proposed.
Abstract: We propose an iterative two-step method to compute a diffeomorphic non-rigid transformation between images of anatomical structures with rigid parts, without any user intervention or prior knowledge on the image intensities. First we compute spatially sparse, locally optimal rigid transformations between the two images using a new block matching strategy and an efficient numerical optimiser (BOBYQA). Then we derive a dense, regularised velocity field based on these local transformations using matrix logarithms and M-smoothing. These two steps are iterated until convergence and the final diffeomorphic transformation is defined as the exponential of the accumulated velocity field. We show our algorithm to outperform the state-of-the-art log-domain diffeomorphic demons method on dynamic cervical MRI data.

35 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The physics of DW-MRI is reviewed, currently preferred methodology is indicated, and the limits of interpretation of its results are explained, with a list of 'Do's and Don'ts' which define good practice in this expanding area of imaging neuroscience.

2,027 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new method where information regarding the local image noise level is used to adjust the amount of denoising strength of the filter, which is automatically obtained from the images using a new local noise estimation method.
Abstract: PURPOSE: To adapt the so-called nonlocal means filter to deal with magnetic resonance (MR) images with spatially varying noise levels (for both Gaussian and Rician distributed noise). MATERIALS AND METHODS: Most filtering techniques assume an equal noise distribution across the image. When this assumption is not met, the resulting filtering becomes suboptimal. This is the case of MR images with spatially varying noise levels, such as those obtained by parallel imaging (sensitivity-encoded), intensity inhomogeneity-corrected images, or surface coil-based acquisitions. We propose a new method where information regarding the local image noise level is used to adjust the amount of denoising strength of the filter. Such information is automatically obtained from the images using a new local noise estimation method. RESULTS: The proposed method was validated and compared with the standard nonlocal means filter on simulated and real MRI data showing an improved performance in all cases. CONCLUSION: The new noise-adaptive method was demonstrated to outperform the standard filter when spatially varying noise is present in the images.

871 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate the state-of-the-art denoising performance of BM4D, and its effectiveness when exploited as a regularizer in volumetric data reconstruction.
Abstract: We present an extension of the BM3D filter to volumetric data. The proposed algorithm, BM4D, implements the grouping and collaborative filtering paradigm, where mutually similar d -dimensional patches are stacked together in a (d+1) -dimensional array and jointly filtered in transform domain. While in BM3D the basic data patches are blocks of pixels, in BM4D we utilize cubes of voxels, which are stacked into a 4-D “group.” The 4-D transform applied on the group simultaneously exploits the local correlation present among voxels in each cube and the nonlocal correlation between the corresponding voxels of different cubes. Thus, the spectrum of the group is highly sparse, leading to very effective separation of signal and noise through coefficient shrinkage. After inverse transformation, we obtain estimates of each grouped cube, which are then adaptively aggregated at their original locations. We evaluate the algorithm on denoising of volumetric data corrupted by Gaussian and Rician noise, as well as on reconstruction of volumetric phantom data with non-zero phase from noisy and incomplete Fourier-domain (k-space) measurements. Experimental results demonstrate the state-of-the-art denoising performance of BM4D, and its effectiveness when exploited as a regularizer in volumetric data reconstruction.

748 citations

Journal ArticleDOI
TL;DR: Inspired by recent work in image denoising, the proposed nonlocal patch-based label fusion produces accurate and robust segmentation in quantitative magnetic resonance analysis.

709 citations