scispace - formally typeset
Search or ask a question
Author

Nicole Christ

Other affiliations: University of Cologne
Bio: Nicole Christ is an academic researcher from Memorial Sloan Kettering Cancer Center. The author has contributed to research in topics: Site-specific recombination & Homologous recombination. The author has an hindex of 10, co-authored 16 publications receiving 2294 citations. Previous affiliations of Nicole Christ include University of Cologne.

Papers
More filters
Journal ArticleDOI
13 May 2011-Cell
TL;DR: Using single-molecule DNA fiber analysis, it is shown that nascent replication tracts created before fork stalling with hydroxyurea are degraded in the absence of BRCA2 but are stable in wild-type cells.

1,001 citations

Journal ArticleDOI
TL;DR: PALB2 licenses key cellular biochemical properties of BRCA2 and ensures its tumor suppression function, as well as enabling homologous recombination (HR)-based, error-free DNA double-strand break repair (DSBR) and intra-S phase DNA damage checkpoint control.

797 citations

Journal ArticleDOI
31 Mar 2005-Nature
TL;DR: It is shown that the carboxy-terminal region of BRCA2, which interacts directly with the essential recombination protein RAD51, contains a site that is phosphorylated by cyclin-dependent kinases, indicating that S3291 phosphorylation might provide a molecular switch to regulate RAD51 recombination activity.
Abstract: Inherited mutations in BRCA2 are associated with a predisposition to early-onset breast cancers. The underlying basis of tumorigenesis is thought to be linked to defects in DNA double-strand break repair by homologous recombination. Here we show that the carboxy-terminal region of BRCA2, which interacts directly with the essential recombination protein RAD51, contains a site (serine 3291; S3291) that is phosphorylated by cyclin-dependent kinases. Phosphorylation of S3291 is low in S phase when recombination is active, but increases as cells progress towards mitosis. This modification blocks C-terminal interactions between BRCA2 and RAD51. However, DNA damage overcomes cell cycle regulation by decreasing S3291 phosphorylation and stimulating interactions with RAD51. These results indicate that S3291 phosphorylation might provide a molecular switch to regulate RAD51 recombination activity, providing new insight into why BRCA2 C-terminal deletions lead to radiation sensitivity and cancer predisposition.

444 citations

Journal ArticleDOI
TL;DR: The high level of spontaneous chromosomal aberrations in Brca2 mutant cells was largely suppressed by the BRC-RPA fusion proteins, supporting the notion that the primary role of BRCA2 in maintaining genomic integrity is in HDR, specifically to deliver Rad51 to ssDNA.
Abstract: The BRCA2 tumor suppressor plays an important role in the repair of DNA damage by homologous recombination, also termed homology-directed repair (HDR). Human BRCA2 is 3,418 aa and is composed of several domains. The central part of the protein contains multiple copies of a motif that binds the Rad51 recombinase (the BRC repeat), and the C terminus contains domains that have structural similarity to domains in the ssDNA-binding protein replication protein A (RPA). To gain insight into the role of BRCA2 in the repair of DNA damage, we fused a single (BRC3, BRC4) or multiple BRC motifs to the large RPA subunit. Expression of any of these protein fusions in Brca2 mutant cells substantially improved HDR while suppressing mutagenic repair. A fusion containing a Rad52 ssDNA-binding domain also was active in HDR. Mutations that reduced ssDNA or Rad51 binding impaired the ability of the fusion proteins to function in HDR. The high level of spontaneous chromosomal aberrations in Brca2 mutant cells was largely suppressed by the BRC-RPA fusion proteins, supporting the notion that the primary role of BRCA2 in maintaining genomic integrity is in HDR, specifically to deliver Rad51 to ssDNA. The fusion proteins also restored Rad51 focus formation and cellular survival in response to DNA damaging agents. Because as little as 2% of BRCA2 fused to RPA is sufficient to suppress cellular defects found in Brca2-mutant mammalian cells, these results provide insight into the recently discovered diversity of BRCA2 domain structures in different organisms.

99 citations

Journal ArticleDOI
TL;DR: Two mutant Int proteins are shown to be proficient to perform intramolecular integrative and excisive recombination in co-transfection assays inside human cells, implying that eukaryotic co-factors, which could functionally replace the prokaryotic ones normally required for wild-type Int, are most likely not present in human cells.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals.

3,678 citations

Journal ArticleDOI
TL;DR: Genetic evidence suggests that tumour cells may also require specific interphase CDKs for proliferation, and selective CDK inhibition may provide therapeutic benefit against certain human neoplasias.
Abstract: Tumour-associated cell cycle defects are often mediated by alterations in cyclin-dependent kinase (CDK) activity. Misregulated CDKs induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, mammalian CDKs are essential for driving each cell cycle phase, so therapeutic strategies that block CDK activity are unlikely to selectively target tumour cells. However, recent genetic evidence has revealed that, whereas CDK1 is required for the cell cycle, interphase CDKs are only essential for proliferation of specialized cells. Emerging evidence suggests that tumour cells may also require specific interphase CDKs for proliferation. Thus, selective CDK inhibition may provide therapeutic benefit against certain human neoplasias.

3,146 citations

Journal ArticleDOI
25 May 2007-Science
TL;DR: A large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR is performed and more than 900 regulated phosphorylation sites encompassing over 700 proteins are identified.
Abstract: Cellular responses to DNA damage are mediated by a number of protein kinases, including ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related). The outlines of the signal transduction portion of this pathway are known, but little is known about the physiological scope of the DNA damage response (DDR). We performed a large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR and identified more than 900 regulated phosphorylation sites encompassing over 700 proteins. Functional analysis of a subset of this data set indicated that this list is highly enriched for proteins involved in the DDR. This set of proteins is highly interconnected, and we identified a large number of protein modules and networks not previously linked to the DDR. This database paints a much broader landscape for the DDR than was previously appreciated and opens new avenues of investigation into the responses to DNA damage in mammals.

2,967 citations

Journal ArticleDOI
TL;DR: HR accessory factors that facilitate other stages of the Rad51- and Dmc1-catalyzed homologous DNA pairing and strand exchange reaction have also been identified.
Abstract: Homologous recombination (HR) serves to eliminate deleterious lesions, such as double-stranded breaks and interstrand crosslinks, from chromosomes. HR is also critical for the preservation of repli- cation forks, for telomere maintenance, and chromosome segrega- tion in meiosis I. As such, HR is indispensable for the maintenance of genome integrity and the avoidance of cancers in humans. The HR reaction is mediated by a conserved class of enzymes termed recombinases. Two recombinases, Rad51 and Dmc1, catalyze the pairing and shuffling of homologous DNA sequences in eukaryotic cells via a filamentous intermediate on ssDNA called the presynaptic filament. The assembly of the presynaptic filament is a rate-limiting process that is enhanced by recombination mediators, such as the breast tumor suppressor BRCA2. HR accessory factors that facil- itate other stages of the Rad51- and Dmc1-catalyzed homologous DNA pairing and strand exchange reaction have also been identified. Recent progress on elucidating the mechanisms of action of Rad51 and Dmc1 and their cohorts of ancillary factors is reviewed here.

1,542 citations

Journal ArticleDOI
TL;DR: In this paper, the kinase ATR (ATM- and Rad3-related) stabilizes and helps to restart stalled replication forks, avoiding the generation of DNA damage and genome instability.
Abstract: Replication stress is a complex phenomenon that has serious implications for genome stability, cell survival and human disease. Generation of aberrant replication fork structures containing single-stranded DNA activates the replication stress response, primarily mediated by the kinase ATR (ATM- and Rad3-related). Along with its downstream effectors, ATR stabilizes and helps to restart stalled replication forks, avoiding the generation of DNA damage and genome instability. Understanding this response may be key to diagnosing and treating human diseases caused by defective responses to replication stress.

1,492 citations