scispace - formally typeset
Search or ask a question
Author

Nicole Eyet

Bio: Nicole Eyet is an academic researcher from Saint Anselm College. The author has contributed to research in topics: Reaction rate constant & Kinetic isotope effect. The author has an hindex of 11, co-authored 20 publications receiving 313 citations. Previous affiliations of Nicole Eyet include National Institute of Standards and Technology & University of Colorado Boulder.

Papers
More filters
Journal ArticleDOI
TL;DR: These results provide qualitative insight into the competition between two classical organic mechanisms, nucleophilic substitution (S(N)2) and base-induced elimination (E2), and suggest that the alpha-effect is not due to an intrinsic property of the anion but instead due to a solvent effect.
Abstract: Reaction rate constants and deuterium kinetic isotope effects for the reactions of BrO− with RCl (R = methyl, ethyl, isopropyl, and tert-butyl) were measured using a tandem flowing afterglow-selected ion flow tube instrument. These results provide qualitative insight into the competition between two classical organic mechanisms, nucleophilic substitution (SN2) and base-induced elimination (E2). As the extent of substitution in the neutral reactants increases, the kinetic isotope effects become increasingly more normal, consistent with the gradual onset of the E2 channel. These results are in excellent agreement with previously reported trends for the analogous reactions of ClO− with RCl. [Villano et al. J. Am. Chem. Soc. 2006, 128, 728.] However, the reactions of BrO− and ClO− with methyl chloride, ethyl chloride, and isopropyl chloride were found to occur by an additional reaction pathway, which has not previously been reported. This reaction likely proceeds initially through a traditional SN2 transition...

71 citations

Journal ArticleDOI
TL;DR: The Solvation Rule fails the ultimate test of predicting gas phase results, where significantly smaller (more inverse) KIEs indicate the existence of a tighter transition state.
Abstract: Direct comparisons of the reactivity and mechanistic pathways for anionic systems in the gas phase and in solution are presented. Rate constants and kinetic isotope effects for the reactions of methyl, ethyl, isopropyl, and tert-butyl iodide with cyanide ion in the gas phase, as well as for the reactions of methyl and ethyl iodide with cyanide ion in several solvents, are reported. In addition to measuring the perdeutero kinetic isotope effect (KIE) for each reaction, the secondary alpha- and beta-deuterium KIEs were determined for the ethyl iodide reaction. Comparisons of experimental results with computational transition states, KIEs, and branching fractions are explored to determine how solvent affects these reactions. The KIEs show that the transition state does not change significantly when the solvent is changed from dimethyl sulfoxide/methanol (a protic solvent) to dimethyl sulfoxide (a strongly polar aprotic solvent) to tetrahydrofuran (a slightly polar aprotic solvent) in the ethyl iodide-cyanide ion S(N)2 reaction in solution, as the "Solvation Rule for S(N)2 Reactions" predicts. However, the Solvation Rule fails the ultimate test of predicting gas phase results, where significantly smaller (more inverse) KIEs indicate the existence of a tighter transition state. This result is primarily attributed to the greater electrostatic forces between the partial negative charges on the iodide and cyanide ions and the partial positive charge on the alpha carbon in the gas phase transition state. Nevertheless, in evaluating the competition between S(N)2 and E2 processes, the mechanistic results for the solution and gas phase reactions are strikingly similar. The reaction of cyanide ion with ethyl iodide occurs exclusively by an S(N)2 mechanism in solution and primarily by an S(N)2 mechanism in the gas phase; only approximately 1% of the gas phase reaction is ascribed to an elimination process.

52 citations

Journal ArticleDOI
TL;DR: In this paper, the rate constants and product branching ratios for the gas phase reactions of C+ with NH3, CH4, O2, H2O, and C2H2 were measured using the flowing afterglow selected ion flow tube (FASIFT) technique.
Abstract: The current uncertainty in many reaction rate constants causes difficulties in providing satisfactory models of interstellar chemistry. Here we present new measurements of the rate constants and product branching ratios for the gas phase reactions of C+ with NH3, CH4, O2, H2O, and C2H2, using the flowing afterglow-selected ion flow tube (FASIFT) technique. Results were obtained using two instruments that were separately calibrated and optimized; in addition, low ionization energies were used to ensure formation of ground-state C+, the purities of the neutral reactants were verified, and mass discrimination was minimized.

23 citations

Journal ArticleDOI
TL;DR: The 351.1 nm photoelectron spectrum of the peroxyformate anion shows vibronic features in both the 2A'' ground and 2A' first excited states of the corresponding radical, indicating that the ion is formed exclusively in the trans-conformation.
Abstract: The 351.1 nm photoelectron spectrum of the peroxyformate anion has been measured. The photoelectron spectrum displays vibronic features in both the X2A′′ ground and A2A′ first excited states of the corresponding radical. Franck−Condon simulations of the spectrum show that the ion is formed exclusively in the trans-conformation. The electron affinity (EA) of the peroxyformyl radical was determined to be 2.493 ± 0.006 eV, while the term energy splitting was found to be 0.783−0.020+0.060 eV. Extended progressions in the C−OO (973 ± 20 cm−1) and O−O (1098 ± 20 cm−1) stretching modes are observed in the ground state of the radical. The fundamental frequency of the in-plane OCO bend was found to be 574 ± 35 cm−1. The gas-phase acidity of peroxyformic acid has been determined using an ion−molecule bracketing technique. On the basis of the size of the trans- to cis- isomerization barrier, the measured acidity was assigned to the higher energy trans-conformer of the acid. The gas-phase acidity of the lower energy...

23 citations

Journal ArticleDOI
TL;DR: The gas-phase reactivity of the CHCl*- anion has been investigated with a series of halomethanes using a FA-SIFT instrument and shows that this anion primarily reacts via substitution and by proton transfer.
Abstract: The gas-phase reactivity of the CHCl*- anion has been investigated with a series of halomethanes (CCl4, CHCl3, CH2Cl2, and CH3Cl) using a FA-SIFT instrument. Results show that this anion primarily reacts via substitution and by proton transfer. In addition, the reactions of CHCl*- with CHCl3 and CH2Cl2 form minor amounts of Cl2*- and Cl-. The isotopic distribution of these two products is consistent with an insertion-elimination mechanism, where the anion inserts into a C-Cl bond to form an unstable intermediate, which eliminates either Cl2*- or Cl- and Cl*. Neutral and cationic carbenes are known to insert into single bonds; however, this is the first observation of such reactivity for carbene anions.

23 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This issue discusses proton-coupled electron transfer or PCET processes, which are central to a great many chemical and biochemical processes, from biological catalysis and energy transduction, to bulk industrial chemical processes, to new approaches to solar energy conversion.
Abstract: Many, if not most, redox reactions are coupled to proton transfers. This includes most common sources of chemical potential energy, from the bioenergetic processes that power cells to the fossil fuel combustion that powers cars. These proton-coupled electron transfer or PCET processes may involve multiple electrons and multiple protons, as in the 4 e–, 4 H+ reduction of dioxygen (O2) to water (eq 1), or can involve one electron and one proton such as the formation of tyrosyl radicals from tyrosine residues (TyrOH) in enzymatic catalytic cycles (eq 2). In addition, many multi-electron, multi-proton processes proceed in one-electron and one-proton steps. Organic reactions that proceed in one-electron steps involve radical intermediates, which play critical roles in a wide range of chemical, biological, and industrial processes. This broad and diverse class of PCET reactions are central to a great many chemical and biochemical processes, from biological catalysis and energy transduction, to bulk industrial chemical processes, to new approaches to solar energy conversion. PCET is therefore of broad and increasing interest, as illustrated by this issue and a number of other recent reviews.

1,226 citations

Journal ArticleDOI
TL;DR: The UMIST Database for Astrochemistry (UDfaa) as mentioned in this paper contains 6173 gas-phase reactions involving 467 species, 47 of which are new to this release.
Abstract: We present the fifth release of the UMIST Database for Astrochemistry (UDfA). The new reaction network contains 6173 gas-phase reactions, involving 467 species, 47 of which are new to this release. We have updated rate coefficients across all reaction types. We have included 1171 new anion reactions and updated and reviewed all photorates. In addition to the usual reaction network, we also now include, for download, state-specific deuterated rate coefficients, deuterium exchange reactions and a list of surface binding energies for many neutral species. Where possible, we have referenced the original source of all new and existing data. We have tested the main reaction network using a dark cloud model and a carbon-rich circumstellar envelope model. We present and briefly discuss the results of these models.

834 citations

Journal ArticleDOI
TL;DR: The UMIST Database for Astrochemistry (UDfaa) as discussed by the authors contains 6173 gas-phase reactions involving 467 species, 47 of which are new to this release.
Abstract: We present the fifth release of the UMIST Database for Astrochemistry (UDfA). The new reaction network contains 6173 gas-phase reactions, involving 467 species, 47 of which are new to this release. We have updated rate coefficients across all reaction types. We have included 1171 new anion reactions and updated and reviewed all photorates. In addition to the usual reaction network, we also now include, for download, state-specific deuterated rate coefficients, deuterium exchange reactions and a list of surface binding energies for many neutral species. Where possible, we have referenced the original source of all new and existing data. We have tested the main reaction network using a dark cloud model and a carbon-rich circumstellar envelope model. We present and briefly discuss the results of these models.

608 citations

Journal ArticleDOI
TL;DR: The KInetic Database for Astrochemistry (KIDA) as mentioned in this paper is a database of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible.
Abstract: We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense interstellar clouds with temperatures between 10 K and 300 K. We also provide a code, named Nahoon, to study the time-dependent gas-phase chemistry of zero-dimensional and one-dimensional interstellar sources.

483 citations

Journal ArticleDOI
TL;DR: In this paper, a full exploration of the scope and limitations of phosphine oxide catalyzed chlorination reactions as well as the analogous bromination reactions is presented, including density functional theory calculations on proposed intermediates of the catalytic cycle.
Abstract: Catalytic phosphorus(V)-mediated chlorination and bromination reactions of alcohols have been developed. The new reactions constitute a catalytic version of the classical Appel halogenation reaction. In these new reactions oxalyl chloride is used as a consumable stoichiometric reagent to generate the halophosphonium salts responsible for halogenation from catalytic phosphine oxides. Thus, phosphine oxides have been transformed from stoichiometric waste products into catalysts and a new concept for catalytic phosphorus-based activation and nucleophilic substitution of alcohols has been validated. The present study has focused on a full exploration of the scope and limitations of phosphine oxide catalyzed chlorination reactions as well as the development of the analogous bromination reactions. Further mechanistic studies, including density functional theory calculations on proposed intermediates of the catalytic cycle, are consistent with a catalytic cycle involving halo- and alkoxyphosphonium salts as inte...

156 citations