scispace - formally typeset
Search or ask a question
Author

Nicole L. van der Weerden

Bio: Nicole L. van der Weerden is an academic researcher from La Trobe University. The author has contributed to research in topics: Plant defensin & Defensin. The author has an hindex of 19, co-authored 34 publications receiving 1531 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on the mechanism of action of naturally occurring antifungal peptides from a diverse range of sources including plants, mammals, amphibians, insects, crabs, spiders, and fungi.
Abstract: Antimicrobial peptides are a vital component of the innate immune system of all eukaryotic organisms and many of these peptides have potent antifungal activity. They have potential application in the control of fungal pathogens that are a serious threat to both human health and food security. Development of antifungal peptides as therapeutics requires an understanding of their mechanism of action on fungal cells. To date, most research on antimicrobial peptides has focused on their activity against bacteria. Several antimicrobial peptides specifically target fungal cells and are not active against bacteria. Others with broader specificity often have different mechanisms of action against bacteria and fungi. This review focuses on the mechanism of action of naturally occurring antifungal peptides from a diverse range of sources including plants, mammals, amphibians, insects, crabs, spiders, and fungi. While antimicrobial peptides were originally proposed to act via membrane permeabilization, the mechanism of antifungal activity for these peptides is generally more complex and often involves entry of the peptide into the cell.

212 citations

Journal ArticleDOI
TL;DR: The results suggest that the activity of antifungal plant defensins may not be restricted to the hyphal membrane and that they enter cells and affect intracellular targets.

187 citations

Journal ArticleDOI
TL;DR: It is proposed that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired and the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides is demonstrated.
Abstract: Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1 b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1 b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1 b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired.

178 citations

Journal ArticleDOI
TL;DR: NaD1 and Bac2A, a linear variant of the bovine peptide bactenecin, were able to enter the cytoplasm of treated hyphae, indicating that cell death is accelerated by interaction with intracellular targets.

162 citations

Journal ArticleDOI
01 Apr 2014-eLife
TL;DR: A novel cell lysis mechanism by the plant defensin NaD1 that acts via direct binding to the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) that permeabilizes cells via a novel membrane disrupting mechanism is described.
Abstract: Cationic antimicrobial peptides (CAPs) such as defensins are ubiquitously found innate immune molecules that often exhibit broad activity against microbial pathogens and mammalian tumor cells. Many CAPs act at the plasma membrane of cells leading to membrane destabilization and permeabilization. In this study, we describe a novel cell lysis mechanism for fungal and tumor cells by the plant defensin NaD1 that acts via direct binding to the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). We determined the crystal structure of a NaD1:PIP2 complex, revealing a striking oligomeric arrangement comprising seven dimers of NaD1 that cooperatively bind the anionic headgroups of 14 PIP2 molecules through a unique 'cationic grip' configuration. Site-directed mutagenesis of NaD1 confirms that PIP2-mediated oligomerization is important for fungal and tumor cell permeabilization. These observations identify an innate recognition system by NaD1 for direct binding of PIP2 that permeabilizes cells via a novel membrane disrupting mechanism. DOI: http://dx.doi.org/10.7554/eLife.01808.001.

148 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The identification of molecules that modulate the release of NETs has helped to refine the view of the role of neutrophils in immune protection, inflammatory and autoimmune diseases and cancer.
Abstract: Neutrophils are innate immune phagocytes that have a central role in immune defence. Our understanding of the role of neutrophils in pathogen clearance, immune regulation and disease pathology has advanced dramatically in recent years. Web-like chromatin structures known as neutrophil extracellular traps (NETs) have been at the forefront of this renewed interest in neutrophil biology. The identification of molecules that modulate the release of NETs has helped to refine our view of the role of NETs in immune protection, inflammatory and autoimmune diseases and cancer. Here, I discuss the key findings and concepts that have thus far shaped the field of NET biology.

1,564 citations

Book ChapterDOI
01 Jan 2014
TL;DR: This Sprenger Briefs volume is dedicated to IDPs and IDPRs and an attempt is made to compress a massive amount of knowledge and into a digest that aims to be of use to those wishing a fast entry into this promising field of structural biology.
Abstract: Nothing is solid about proteins. Governing rules and established laws are constantly broken. As an example, the last decade and a half have witnessed the fall of one of the major paradigms in structural biology. Contrarily to the more than a century-old belief that the unique function of a protein is determined by its unique structure, which, in its turn, is defined by the unique amino acid sequence, many biologically active proteins lack stable tertiary and/or secondary structure either entirely or at their significant parts. Such intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and functional IDP regions (IDPRs) are highly abundant in nature, and many of them are associated with various human diseases. Such disordered proteins and regions are very different from ordered and well-structured proteins and domains at a variety of levels and possess well-recognizable biases in their amino acid compositions and amino acid sequences. A characteristic feature of these proteins is their exceptional structural heterogeneity, where different parts of a given polypeptide chain can be ordered (or disordered) to different degrees. As a result, a typical IDP/IDPR contains a multitude of potentially foldable, partially foldable, differently foldable or not foldable structural segments. This distribution of conformers is constantly changing in time, where a given segment of a protein molecule has different structures at different time points. The distribution is also constantly changing in response to changes in the environment. This mosaic structural organization is crucial for their functions and many IDPs are engaged in biological functions that rely on high conformational flexibility and that are not accessible to proteins with unique and fixed structures. As a result, the functional repertoire of IDPs complements that of ordered proteins, with IDPs/IDPRs being often involved in regulation, signaling and control. This Sprenger Briefs volume is dedicated to IDPs and IDPRs and an attempt is made to compress a massive amount of knowledge and into a digest that aims to be of use to those wishing a fast entry into this promising field of structural biology.

624 citations

Journal ArticleDOI
TL;DR: The emerging potential to therapeutically harness cationic host defence peptides to treat infectious diseases, chronic inflammatory disorders and wound healing is assessed, highlighting current preclinical studies and clinical trials.
Abstract: Cationic host defence peptides (CHDP), also known as antimicrobial peptides, are naturally occurring peptides that can combat infections through their direct microbicidal properties and/or by influencing the host's immune responses. The unique ability of CHDP to control infections as well as resolve harmful inflammation has generated interest in harnessing the properties of these peptides to develop new therapies for infectious diseases, chronic inflammatory disorders and wound healing. Various strategies have been used to design synthetic optimized peptides, with negligible toxicity. Here, we focus on the progress made in understanding the scope of functions of CHDP and the emerging potential clinical applications of CHDP-based therapies.

617 citations

DOI
05 Sep 2010

494 citations

Journal ArticleDOI
TL;DR: The defensin system may operate in conjunction with or independently from oxygen-dependent microbicidal processes to enable human neutrophils to inactivate and destroy potential pathogens.
Abstract: We extracted a granule-rich sediment from normal human neutrophils and subjected it to chromatographic, electrophoretic, and functional analysis. The extract contained three small (molecular weight less than 3,500) antibiotic peptides that were named human neutrophil peptide (HNP)-1, HNP-2, and HNP-3, and which will be referred to as "defensins." HNP 1-3, a mixture of the three defensins, killed Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli effectively in vitro when tested in 10 mM phosphate buffer containing certain nutrients, but it had little or no bactericidal activity in nutrient-free buffer. In contrast, the nutrient-free buffer supported a high degree of activity by HNP 1-3 against Cryptococcus neoformans. In addition to its antibacterial and antifungal properties, HNP 1-3 directly inactivated herpes simplex virus, Type 1. Two of the individual purified defensins, HNP-1 and HNP-2, were as microbicidal as the mixture HNP 1-3. HNP-3 was less active than the other defensins against most but not all of the microbes tested. Immunoperoxidase stains revealed HNP 1-3 to have a granular localization in the neutrophil's cytoplasm by light microscopy. Frozen thin section immunogold transmission electron microscopy showed HNP 1-3 to be localized in azurophil granules. These studies define a broad-spectrum antimicrobial system in human neutrophils. The defensin system may operate in conjunction with or independently from oxygen-dependent microbicidal processes to enable human neutrophils to inactivate and destroy potential pathogens.

468 citations