scispace - formally typeset
Search or ask a question
Author

Nicole Métrich

Bio: Nicole Métrich is an academic researcher from Institut de Physique du Globe de Paris. The author has contributed to research in topics: Melt inclusions & Magma. The author has an hindex of 44, co-authored 115 publications receiving 5810 citations. Previous affiliations of Nicole Métrich include Paris Diderot University & National Institute of Geophysics and Volcanology.
Topics: Melt inclusions, Magma, Volcano, Basalt, Lava


Papers
More filters
Journal ArticleDOI
TL;DR: The abundances of CO2, H2O, S and halogens dissolved in basaltic magmas are strongly variable because their solubilities and ability to be fractionated in the vapor phase depend on several parameters such as pressure, temperature, melt composition and redox state as mentioned in this paper.
Abstract: The abundances of CO2, H2O, S and halogens dissolved in basaltic magmas are strongly variable because their solubilities and ability to be fractionated in the vapor phase depend on several parameters such as pressure, temperature, melt composition and redox state. Experimental and analytical studies show that CO2 is much less soluble in silicate melts compared to H2O (e.g., Javoy and Pineau 1991; Dixon et al. 1995). As much as 90% of the initial CO2 dissolved in basaltic melts may be already degassed at crustal depths, whereas H2O remains dissolved because of its higher solubility such that H2O contents of basaltic magmas at crustal depths may reach a few percents. Most subduction-related basaltic magmas are rich in H2O (up to 6–8 wt%; Sisson and Grove 1993; Roggensack et al. 1997; Newman et al. 2000; Pichavant et al. 2002; Grove et al. 2005) compared to mid-ocean ridge basalts (<1 wt%; Sobolev and Chaussidon 1996; Fischer and Marty 2005; Wallace 2005). During magma movement towards the surface, exsolution of major volatile constituents (CO2, H2O) causes gas bubble nucleation, growth, and possible coalescence that exert a strong control on the dynamics of magma ascent and eruption (Anderson 1975; Sparks 1978; Tait et al. 1989). Gas bubbles have the ability to move faster than magma (Sparks 1978), particularly in low viscosity basaltic magmas. Bubble accumulation, coalescence and foam collapse give rise to differential transfer of gas slugs and periodic gas bursting (Strombolian activity; Jaupart and Vergniolle 1988, 1989) or periodic lava fountains (Vergniolle and Jaupart 1990; Philips and Wood 2001) depending on magma physical properties and ascent rate. It is also thought that strombolian and lava …

340 citations

Journal ArticleDOI
TL;DR: In this article, the authors decipher the origin and mechanisms of the second eruption from the composition and volatile (H2O, CO2, S, Cl) content of olivine-hosted melt inclusions in explosive products from its south flank vents.
Abstract: [1] Two unusual, highly explosive flank eruptions succeeded on Mount Etna in July August 2001 and in October 2002 to January 2003, raising the possibility of changing magmatic conditions. Here we decipher the origin and mechanisms of the second eruption from the composition and volatile (H2O, CO2, S, Cl) content of olivine-hosted melt inclusions in explosive products from its south flank vents. Our results demonstrate that powerful lava fountains and ash columns at the eruption onset were sustained by closed system ascent of a batch of primitive, volatile-rich (≥4 wt %) basaltic magma that rose from ≥10 km depth below sea level (bsl) and suddenly extruded through 2001 fractures maintained opened by eastward flank spreading. This magma, the most primitive for 240 years, probably represents the alkali-rich parental end-member responsible for Etna lavas' evolution since the early 1970s. Few of it was directly extruded at the eruption onset, but its input likely pressurized the shallow plumbing system several weeks before the eruption. This latter was subsequently fed by the extrusion and degassing of larger amounts of the same, but slightly more evolved, magma that were ponding at 6–4 km bsl, in agreement with seismic data and with the lack of preeruptive SO2 accumulation above the initial depth of sulphur exsolution (∼3 km bsl). We find that while ponding, this magma was flushed and dehydrated by a CO2-rich gas phase of deeper derivation, a process that may commonly affect the plumbing system of Etna and other alkali basaltic volcanoes.

310 citations

Journal ArticleDOI
TL;DR: A detailed study of the chemistry and dissolved volatile content of melt inclusions trapped in olivine crystals of unusual plagioclase-poor primitive basalt that was extruded during a highly explosive flank eruption in July-August 2001 is presented in this article.

232 citations

Journal ArticleDOI
TL;DR: In this paper, an extensive dataset on major elements and volatiles (CO2, H2O, S and Cl) in olivine-hosted melt inclusions and embayments from pyroclasts emplaced during explosive eruptions of variable magnitude is presented.
Abstract: Stromboli is known for its persistent degassing and rhythmic strombolian activity occasionally punctuated by paroxysmal eruptions. The basaltic pumice and scoria emitted during paroxysms and strombolian activity, respectively, differ in their textures, crystal contents and glass matrix compositions, which testify to distinct conditions of crystallization, degassing and magma ascent. We present here an extensive dataset on major elements and volatiles (CO2, H2O, S and Cl) in olivine-hosted melt inclusions and embayments from pyroclasts emplaced during explosive eruptions of variable magnitude. Magma saturation pressures were assessed from the dissolved amounts of H2 Oa nd CO2 taking into account the melt composition evolution. Both pressures and melt inclusion compositions indicate that (1) Ca-basaltic melts entrapped in high-Mg olivines (Fo89^90) generate Stromboli basalts through crystal fractionation, and (2) the Stromboli plumbing system can be imaged as a succession of magma ponding zones connected by dikes. The 7^10 km interval, where magmas are stored and differentiate, is periodically recharged by new magma batches, possibly ranging from Ca-basalts to basalts, with a CO2-rich gas phase.These deep recharges promote the formation of bubbly basalt blobs, which are able to intrude the shallow plumbing system (2^4 km), where CO2 gas fluxing enhances H2O loss, crystallization and generation of crystal-rich, dense, degassed magma. Chlorine partitioning into the H2O^CO2-bearing gas phase accounts for its efficient degassing (� 69%) under the open-system conditions of strombolian activity. Paroxysms, however, are generated through predominantly closed-system ascent of basaltic magma batches from the deep storage zone. In this situation crystallization is negligible and sulfur exsolution starts at � 170 MPa. Chlorine remains dissolved in the melt until lower pressures, only 16% being lost upon eruption. Finally, we propose a continuum in explosive eruption energy, from strombolian activity to large paroxysmal events, ultimately controlled by variable pressurization of the deep feeding system associated with magma and gas recharges.

206 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an internal standard-independent calibration strategy for LA-ICP-MS analysis of anhydrous minerals and glasses was described, where the ablation yield correction factor (AYCF) was used to correct the matrix-dependent absolute amount of materials ablated during each run.

2,995 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a compilation of trace element data from approximately sixty published works for NIST SRM 611 and NISTSRM 613 and provide useful new working values for these reference materials.
Abstract: Microanalytical trace element techniques (such as ion probe or laser ablation ICP-MS) are hampered by a lack of well characterized, homogeneous standards. Two silicate glass reference materials produced by National Institute of Standards and Technology (NIST), NIST SRM 610 and NIST SRM 612, have been shown to be homogeneous and are spiked with up to sixty one trace elements at nominal concentrations of 500 μg g-1 and 50 μg g-1 respectively. These samples (supplied as 3 mm wafers) are equivalent to NIST SRM 611 and NIST SRM 613 respectively (which are supplied as 1 mm wafers) and are becoming more widely used as potential microanalytical reference materials. NIST however, only certifies up to eight elements in these glasses. Here we have compiled concentration data from approximately sixty published works for both glasses, and have produced new analyses from our laboratories. Compilations are presented for the matrix composition of these glasses and for fifty eight trace elements. The trace element data includes all available new and published data, and summaries present the overall average and standard deviation, the range, median, geometric mean and a preferred average (which excludes all data outside ± one standard deviation of the overall average). For the elements which have been certified, there is a good agreement between the compiled averages and the NIST data. This compilation is designed to provide useful new working values for these reference materials.

2,487 citations

MonographDOI
09 Jan 2020
TL;DR: The third edition of the reference book as discussed by the authors has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results, and highlights applications in unconventional reservoirs, including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates.
Abstract: Responding to the latest developments in rock physics research, this popular reference book has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results. It brings together the vast literature from the field to address the relationships between geophysical observations and the underlying physical properties of Earth materials - including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates. This third edition includes expanded coverage of topics such as effective medium models, viscoelasticity, attenuation, anisotropy, electrical-elastic cross relations, and highlights applications in unconventional reservoirs. Appendices have been enhanced with new materials and properties, while worked examples (supplemented by online datasets and MATLAB® codes) enable readers to implement the workflows and models in practice. This significantly revised edition will continue to be the go-to reference for students and researchers interested in rock physics, near-surface geophysics, seismology, and professionals in the oil and gas industries.

1,387 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed spinel-olivine pairs and 400 melt inclusion-spinel pairs from 36 igneous suites from oceanic, arc and intraplate tectonic settings.
Abstract: Compositions of ~2500 spinel-olivine pairs and 400 melt inclusion-spinel pairs have been analysed from 36 igneous suites from oceanic, arc and intraplate tectonic settings. Our data confirm that Cr-spinel mg-number is largely controlled by melt composition, but also influenced by octahedral site substitutions, and rate of cooling. Lavas quenched in submarine environments tend to have higher mg-number at a given cr-number than slowly cooled subaerial lavas and peridotites. Unlike mg-number, Cr-spinel Al2O3 and TiO2 contents show good correlations with melt composition, with only limited post-entrapment modifications. Out data suggest that increased activity of Al2O3 decreases the partitioning of TiO2 into spinels. The Al2O3 content of Cr-spinel is a useful guide to the degree of partial melting of mantle peridotites; however, this same relationship is obscured in volcanic rocks. Al2O3 contents of volcanic Cr-spinels are mostly determined by melt composition rather than mantle source composition. The data also suggest that most spinels from residual mantle peridotites can be readily differentiated from those hosted in volcanic rocks. Mantle peridotite spinel tend to have lower TiO2 and higher Fe2+/Fe3+ ratios than spinel from volcanic rocks. The spinel compositions in our database can be subdivided on the basis of tectonic setting and mode of occurrence using an Al2O3 vs TiO2 diagram. A total of seven fields can be distinguished with varying degrees of overlap. This diagram can then be used to determine the tectonic setting of spinel from altered mafic igneous rocks such as serpentinites or meta-basalts, or detrital spinel in sandstones.

881 citations