scispace - formally typeset
Search or ask a question
Author

Nicole Vilmer

Bio: Nicole Vilmer is an academic researcher from Paris Diderot University. The author has contributed to research in topics: Solar flare & Flare. The author has an hindex of 35, co-authored 125 publications receiving 4346 citations. Previous affiliations of Nicole Vilmer include Centre national de la recherche scientifique & Janssen Pharmaceutica.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarize Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) hard X-ray (HXR) and γ-ray imaging and spectroscopy observations of the intense (X4.8) γray line flare of 2002 July 23.
Abstract: We summarize Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) hard X-ray (HXR) and γ-ray imaging and spectroscopy observations of the intense (X4.8) γ-ray line flare of 2002 July 23. In the initial rise, a new type of coronal HXR source dominates that has a steep double-power-law X-ray spectrum and no evidence of thermal emission above 10 keV, indicating substantial electron acceleration to tens of keV early in the flare. In the subsequent impulsive phase, three footpoint sources with much flatter double-power-law HXR spectra appear, together with a coronal superhot (T ~ 40 MK) thermal source. The north footpoint and the coronal source both move systematically to the north-northeast at speeds up to ~50 km s-1. This footpoint's HXR flux varies approximately with its speed, consistent with magnetic reconnection models, provided the rate of electron acceleration varies with the reconnection rate. The other footpoints show similar temporal variations but do not move systematically, contrary to simple reconnection models. The γ-ray line and continuum emissions show that ions and electrons are accelerated to tens of MeV during the impulsive phase. The prompt de-excitation γ-ray lines of Fe, Mg, Si, Ne, C, and O—resolved here for the first time—show mass-dependent redshifts of 0.1%-0.8%, implying a downward motion of accelerated protons and α-particles along magnetic field lines that are tilted toward the Earth by ~40°. For the first time, the positron annihilation line is resolved, and the detailed high-resolution measurements are obtained for the neutron-capture line. The first ever solar γ-ray line and continuum imaging shows that the source locations for the relativistic electron bremsstrahlung overlap the 50-100 keV HXR sources, implying that electrons of all energies are accelerated in the same region. The centroid of the ion-produced 2.223 MeV neutron-capture line emission, however, is located ~20'' ± 6'' away, implying that the acceleration and/or propagation of the ions must differ from that of the electrons. Assuming that Coulomb collisions dominate the energetic electron and ion energy losses (thick target), we estimate that a minimum of ~2 × 1031 ergs is released in accelerated >~20 keV electrons during the rise phase, with ~1031 ergs in ions above 2.5 MeV nucleon-1 and about the same in electrons above 30 keV released in the impulsive phase. Much more energy could be in accelerated particles if their spectra extend to lower energies.

492 citations

Journal ArticleDOI
TL;DR: There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world as discussed by the authors, and there is also a growing awareness that space weather impacts the technologies that are used in the world.

255 citations

Journal ArticleDOI
TL;DR: In this article, the basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection, are reviewed, including detailed studies of reconnection in three-dimensional magnetic field configurations, and stochastic acceleration in a turbulent environment.
Abstract: We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

207 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the contribution of radio observations to the understanding of solar and solar-terrestrial physics from the first discovery of the radio emissions to present days, focusing on the radio observations of phenomena linked to solar activity.
Abstract: This paper will review the input of 65 years of radio observations to our understanding of solar and solar–terrestrial physics. It is focussed on the radio observations of phenomena linked to solar activity in the period going from the first discovery of the radio emissions to present days. We shall present first an overview of solar radio physics focussed on the active Sun and on the premices of solar–terrestrial relationships from the discovery to the 1980s. We shall then discuss the input of radioastronomy both at metric/decimetric wavelengths and at centimetric/millimetric and submillimetric wavelengths to our understanding of flares. We shall also review some of the radio, X-ray and white-light signatures bringing new evidence for reconnection and current sheets in eruptive events. The input of radio images (obtained with a high temporal cadence) to the understanding of the initiation and fast development in the low corona of coronal mass ejections (CMEs) as well as the radio observations of shocks in the corona and in the interplanetary medium will be reviewed. The input of radio observations to our knowledge of the interplanetary magnetic structures (ICMEs) will be summarized; we shall show how radio observations linked to the propagation of electron beams allow to identify small scale structures in the heliosphere and to trace the connection between the Sun and interplanetary structures as far as 4AU. We shall also describe how the radio observations bring useful information on the relationship and connections between the energetic electrons in the corona and the electrons measured in-situ. The input of radio observations on the forecasting of the arrival time of shocks at the Earth as well as on Space Weather studies will be described. In the last section, we shall summarize the key results that have contributed to transform our knowledge of solar activity and its link with the interplanetary medium. In conclusion, we shall indicate the instrumental radio developments at Earth and in space, which are from our point of view, necessary for the future of solar and interplanetary physics.

191 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection, are reviewed, including detailed studies of reconnection in three-dimensional magnetic field configurations, and stochastic acceleration in a turbulent environment.
Abstract: We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

182 citations


Cited by
More filters
15 Mar 1979
TL;DR: In this article, the experimental estimation of parameters for models can be solved through use of the likelihood ratio test, with particular attention to photon counting experiments, and procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply.
Abstract: Many problems in the experimental estimation of parameters for models can be solved through use of the likelihood ratio test. Applications of the likelihood ratio, with particular attention to photon counting experiments, are discussed. The procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply. The procedures are proved analytically, and examples from current problems in astronomy are discussed.

1,748 citations

Book
01 Jan 1957

1,574 citations

Journal ArticleDOI
05 Oct 2006-Nature
TL;DR: Here it is shown that electrons gain kinetic energy by reflecting from the ends of the contracting ‘magnetic islands’ that form as reconnection proceeds, analogous to the increase of energy of a ball reflecting between two converging walls.
Abstract: Electrons gain kinetic energy by reflecting from the ends of the contracting 'magnetic islands' that form as reconnection proceeds. The repetitive interaction of electrons with many islands allows large numbers to be efficiently accelerated to high energy. A long-standing problem in the study of space and astrophysical plasmas is to explain the production of energetic electrons as magnetic fields ‘reconnect’ and release energy. In the Earth's magnetosphere, electron energies reach hundreds of thousands of electron volts (refs 1–3), whereas the typical electron energies associated with large-scale reconnection-driven flows are just a few electron volts. Recent observations further suggest that these energetic particles are produced in the region where the magnetic field reconnects4. In solar flares, upwards of 50 per cent of the energy released can appear as energetic electrons5,6. Here we show that electrons gain kinetic energy by reflecting from the ends of the contracting ‘magnetic islands’ that form as reconnection proceeds. The mechanism is analogous to the increase of energy of a ball reflecting between two converging walls—the ball gains energy with each bounce. The repetitive interaction of electrons with many islands allows large numbers to be efficiently accelerated to high energy. The back pressure of the energetic electrons throttles reconnection so that the electron energy gain is a large fraction of the released magnetic energy. The resultant energy spectra of electrons take the form of power laws with spectral indices that match the magnetospheric observations.

953 citations

Journal ArticleDOI
TL;DR: An overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era, is presented in this paper, where the focus is on different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections.
Abstract: We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections We also discuss flare soft X-ray spectroscopy and the energetics of the process The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations

774 citations

Book
19 Dec 2003
TL;DR: In this article, the Equations of Gas Dynamics and Magnetoplasmas Dynamics were studied, as well as Magnetoplasma Stability and Transport in Magnetplasmas and Magnetic Stability.
Abstract: 1 The Equations of Gas Dynamics 2 Magnetoplasma Dynamics 3 Waves in Magnetoplasmas 4 Magnetoplasma Stability 5 Transport in Magnetoplasmas 6 Extensions of Theory Bibliography Index

748 citations