scispace - formally typeset
Search or ask a question
Author

Nicolò Spagnolo

Other affiliations: University of Paris-Sud
Bio: Nicolò Spagnolo is an academic researcher from Sapienza University of Rome. The author has contributed to research in topics: Quantum technology & Quantum information. The author has an hindex of 35, co-authored 148 publications receiving 4608 citations. Previous affiliations of Nicolò Spagnolo include University of Paris-Sud.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a five-mode integrated interferometer containing three-dimensional S-bent waveguides was used to sample three single photons and the probability ratios of all events were measured.
Abstract: The boson-sampling problem was demonstrated by studying three-photon interference in a five-mode integrated interferometer containing three-dimensional S-bent waveguides. Three single photons were input into the interferometer and the probability ratios of all events were measured. The results agree with quantum mechanical predictions for three-photon interference.

668 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results, can be found in this article, where significant achievements are presented in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.
Abstract: Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.

402 citations

Journal ArticleDOI
TL;DR: In this paper, the Aaronson-Arkhipov test is used to distinguish the AARonson-Arkinov test from uniformly drawn samples for boson-sampling experiments.
Abstract: To address the controversy regarding the validation of an experiment that is hard to simulate, boson-sampling experiments are implemented with three photons in randomly designed integrated chips with up to 13 modes. It is experimentally demonstrated that the Aaronson–Arkhipov test allows boson-sampling experiments to be distinguished from uniformly drawn samples.

331 citations

Journal ArticleDOI
TL;DR: NoON-like photonic states of m quanta of angular momentum up to m=100 are demonstrated, in a setup that acts as a ‘photonic gear’, converting, for each photon, a mechanical rotation of an angle θ into an amplified rotation of the optical polarization by mθ, corresponding to a ’super-resolving’ Malus’ law.
Abstract: Quantum metrology bears a great promise in enhancing measurement precision, but is unlikely to become practical in the near future. Its concepts can nevertheless inspire classical or hybrid methods of immediate value. Here we demonstrate NOON-like photonic states of m quanta of angular momentum up to m=100, in a setup that acts as a 'photonic gear', converting, for each photon, a mechanical rotation of an angle θ into an amplified rotation of the optical polarization by mθ, corresponding to a 'super-resolving' Malus' law. We show that this effect leads to single-photon angular measurements with the same precision of polarization-only quantum strategies with m photons, but robust to photon losses. Moreover, we combine the gear effect with the quantum enhancement due to entanglement, thus exploiting the advantages of both approaches. The high 'gear ratio' m boosts the current state of the art of optical non-contact angular measurements by almost two orders of magnitude.

299 citations

Journal ArticleDOI
TL;DR: The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field with a due balance between theoretical, experimental and technological results.
Abstract: Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.

297 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: Quantum metrology is the use of quantum techniques such as entanglement to yield higher statistical precision than purely classical approaches as discussed by the authors, where the central limit theorem implies that the reduction is proportional to the square root of the number of repetitions.
Abstract: The statistical error in any estimation can be reduced by repeating the measurement and averaging the results. The central limit theorem implies that the reduction is proportional to the square root of the number of repetitions. Quantum metrology is the use of quantum techniques such as entanglement to yield higher statistical precision than purely classical approaches. In this Review, we analyse some of the most promising recent developments of this research field and point out some of the new experiments. We then look at one of the major new trends of the field: analyses of the effects of noise and experimental imperfections.

2,977 citations

Journal ArticleDOI
TL;DR: In this article, the time dependence of ρ11, ρ22 and ρ12 under steady-state conditions was analyzed under a light field interaction V = -μ12Ee iωt + c.c.
Abstract: (b) Write out the equations for the time dependence of ρ11, ρ22, ρ12 and ρ21 assuming that a light field interaction V = -μ12Ee iωt + c.c. couples only levels |1> and |2>, and that the excited levels exhibit spontaneous decay. (8 marks) (c) Under steady-state conditions, find the ratio of populations in states |2> and |3>. (3 marks) (d) Find the slowly varying amplitude ̃ ρ 12 of the polarization ρ12 = ̃ ρ 12e iωt . (6 marks) (e) In the limiting case that no decay is possible from intermediate level |3>, what is the ground state population ρ11(∞)? (2 marks) 2. (15 marks total) In a 2-level atom system subjected to a strong field, dressed states are created in the form |D1(n)> = sin θ |1,n> + cos θ |2,n-1> |D2(n)> = cos θ |1,n> sin θ |2,n-1>

1,872 citations