scispace - formally typeset
Search or ask a question
Author

Nigel J. Mason

Other affiliations: ASTRON, University College London, Free University of Berlin  ...read more
Bio: Nigel J. Mason is an academic researcher from University of Kent. The author has contributed to research in topics: Electron ionization & Spectroscopy. The author has an hindex of 39, co-authored 412 publications receiving 8544 citations. Previous affiliations of Nigel J. Mason include ASTRON & University College London.


Papers
More filters
Journal ArticleDOI
TL;DR: The 2017 plasmas roadmap as mentioned in this paper is the first update of a planned series of periodic updates of the Plasma Roadmap, which was published by the Journal of Physics D: Applied Physics in 2012.
Abstract: Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.

677 citations

Journal ArticleDOI
TL;DR: In this article, cross section data have been compiled from the literature (to the end of 2003) for electron collisions with water (H2O) molecules, including total scattering, elastic scattering, momentum transfer, excitation of rotational, vibrational, and electronic states, ionization, electron attachment, dissociation, and emission of radiation.
Abstract: Cross section data have been compiled from the literature (to the end of 2003) for electron collisions with water (H2O) molecules. All major collision processes are reviewed including: total scattering, elastic scattering, momentum transfer, excitation of rotational, vibrational, and electronic states, ionization, electron attachment, dissociation, and emission of radiation. In each case we assess the collected data and provide a recommendation of the values of the cross section to be used. They are presented in a tabular form. Isotope effects (H2O versus D2O) are discussed as far as information is available.

663 citations

Journal ArticleDOI
TL;DR: The 2012 plasma road map as mentioned in this paper provides guidance to the field by reviewing the major challenges of low-temperature plasma physics and their many sub-fields, as well as a review of the current state of the art in the field.
Abstract: Low-temperature plasma physics and technology are diverse and interdisciplinary fields. The plasma parameters can span many orders of magnitude and applications are found in quite different areas of daily life and industrial production. As a consequence, the trends in research, science and technology are difficult to follow and it is not easy to identify the major challenges of the field and their many sub-fields. Even for experts the road to the future is sometimes lost in the mist. Journal of Physics D: Applied Physics is addressing this need for clarity and thus providing guidance to the field by this special Review article, The 2012 Plasma Roadmap.

571 citations

Journal ArticleDOI
TL;DR: The mechanisms of action of radiation therapy with photons and ions in the presence and absence of nanoparticles, as well as the influence of some of the core and coating design parameters of nanop particles on their radiosensitisation capabilities are summarised.
Abstract: Radiotherapy is currently used in around 50% of cancer treatments and relies on the deposition of energy directly into tumour tissue. Although it is generally effective, some of the deposited energy can adversely affect healthy tissue outside the tumour volume, especially in the case of photon radiation (gamma and X-rays). Improved radiotherapy outcomes can be achieved by employing ion beams due to the characteristic energy deposition curve which culminates in a localised, high radiation dose (in form of a Bragg peak). In addition to ion radiotherapy, novel sensitisers, such as nanoparticles, have shown to locally increase the damaging effect of both photon and ion radiation, when both are applied to the tumour area. Amongst the available nanoparticle systems, gold nanoparticles have become particularly popular due to several advantages: biocompatibility, well-established methods for synthesis in a wide range of sizes, and the possibility of coating of their surface with a large number of different molecules to provide partial control of, for example, surface charge or interaction with serum proteins. This gives a full range of options for design parameter combinations, in which the optimal choice is not always clear, partially due to a lack of understanding of many processes that take place upon irradiation of such complicated systems. In this review, we summarise the mechanisms of action of radiation therapy with photons and ions in the presence and absence of nanoparticles, as well as the influence of some of the core and coating design parameters of nanoparticles on their radiosensitisation capabilities.

322 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the synthesis of the simplest amino acid, glycine, by Galactic cosmic-ray particles in extraterrestrialices and provided detailed reaction mechanisms of how the simple amino acid glycine and its isomer can be synthesized via nonequilibrium chemistry in interstellar and cometary ices.
Abstract: We have investigated the synthesis of the simplest aminoacid, glycine, by Galactic cosmic-ray particles in extraterrestrialices.Laboratoryexperimentscombinedwithelectronicstructurecalculationsshowedthatamethylamine molecule [CH3NH2(X 1 A 0 )] can be dissociated through interaction with energetic electrons in the track of a cosmicray particle to form atomic hydrogen and the radicals CH2NH2(X 2 A 0 )a nd CH3NH(X 2 A 0 ). Hydrogen atoms with sufficient kinetic energy could overcome the entrance barrier to add to a carbon dioxide molecule [CO2(X 1 � þ )], yielding a trans-hydroxycarbonyl radical, HOCO(X 2 A 0 ). Neighboring radicals with the correct geometric orientation then recombine to form glycine, NH2CH2COOH(X 1 A), and also its isomer, CH3NHCOOH(X 1 A). These findings expose for the first time detailed reaction mechanisms of how the simplest amino acid glycine and its isomer can be synthesized via nonequilibrium chemistry in interstellar and cometary ices. Our results offer an important alternative to aqueous and photon-induced formation of amino acids in comets and in molecular clouds. These results also predict the existence of a hitherto undetected isomer of glycine in the interstellar medium, suggest that glycine should be observable on Saturn’s moon Titan, and help to account for the synthesis of more complex amino acids in the Murchison and Orgueil meteorites.

216 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Book ChapterDOI
01 Jan 2014
TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Abstract: This chapter should be cited as: Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Coordinating Lead Authors: Gunnar Myhre (Norway), Drew Shindell (USA)

3,684 citations

01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

Journal ArticleDOI
TL;DR: It is shown that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent, which made it possible to formulate a variational principle for the force-free magnetic fields.
Abstract: where A represents the magnetic vector potential, is an integral of the hydromagnetic equations. This -integral made it possible to formulate a variational principle for the force-free magnetic fields. The integral expresses the fact that motions cannot transform a given field in an entirely arbitrary different field, if the conductivity of the medium isconsidered infinite. In this paper we shall show that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent. These integrals, as we shall presently verify, are I2 =fbHvdV, (2)

1,858 citations