scispace - formally typeset
Search or ask a question
Author

Nigel Pontee

Other affiliations: University of Bordeaux
Bio: Nigel Pontee is an academic researcher from University of Southampton. The author has contributed to research in topics: Coastal management & Sediment. The author has an hindex of 15, co-authored 36 publications receiving 1060 citations. Previous affiliations of Nigel Pontee include University of Bordeaux.

Papers
More filters
Journal ArticleDOI
02 May 2016-PLOS ONE
TL;DR: The comparison of costs of nature-based defence projects and engineering structures show that salt-marshes and mangroves can be two to five times cheaper than a submerged breakwater for wave heights up to half a metre and, within their limits, become more cost effective at greater depths.
Abstract: There is great interest in the restoration and conservation of coastal habitats for protection from flooding and erosion. This is evidenced by the growing number of analyses and reviews of the effectiveness of habitats as natural defences and increasing funding world-wide for nature-based defences-i.e. restoration projects aimed at coastal protection; yet, there is no synthetic information on what kinds of projects are effective and cost effective for this purpose. This paper addresses two issues critical for designing restoration projects for coastal protection: (i) a synthesis of the costs and benefits of projects designed for coastal protection (nature-based defences) and (ii) analyses of the effectiveness of coastal habitats (natural defences) in reducing wave heights and the biophysical parameters that influence this effectiveness. We (i) analyse data from sixty-nine field measurements in coastal habitats globally and examine measures of effectiveness of mangroves, salt-marshes, coral reefs and seagrass/kelp beds for wave height reduction; (ii) synthesise the costs and coastal protection benefits of fifty-two nature-based defence projects and; (iii) estimate the benefits of each restoration project by combining information on restoration costs with data from nearby field measurements. The analyses of field measurements show that coastal habitats have significant potential for reducing wave heights that varies by habitat and site. In general, coral reefs and salt-marshes have the highest overall potential. Habitat effectiveness is influenced by: a) the ratios of wave height-to-water depth and habitat width-to-wavelength in coral reefs; and b) the ratio of vegetation height-to-water depth in salt-marshes. The comparison of costs of nature-based defence projects and engineering structures show that salt-marshes and mangroves can be two to five times cheaper than a submerged breakwater for wave heights up to half a metre and, within their limits, become more cost effective at greater depths. Nature-based defence projects also report benefits ranging from reductions in storm damage to reductions in coastal structure costs.

392 citations

Journal ArticleDOI
TL;DR: In the UK, the term "coastal squeeze" is commonly used to describe the loss of coastal habitats in front of sea defences as mentioned in this paper. But the definition of coastal squeeze has been ambiguous.

187 citations

Journal ArticleDOI
TL;DR: In this article, the authors used ground-penetrating radar (GPR) and photographic records of previous excavations to investigate the stratigraphy and internal sedimentary structure of mixed-beach deposits at Aldeburgh in Suffolk, south-east England.
Abstract: Mixed-sand-and-gravel beaches are a distinctive type of coarse-clastic beach. Ground-penetrating radar (GPR) and photographic records of previous excavations are used to investigate the stratigraphy and internal sedimentary structure of mixed-beach deposits at Aldeburgh in Suffolk, south-east England. The principles of radar stratigraphy are used to describe and interpret migrated radar reflection profiles obtained from the study site. The application of radar stratigraphy allows the delineation of both bounding surfaces (radar surfaces) and the intervening beds or bed sets (radar facies). The deposits of the main backshore berm ridge consist of seaward-dipping bounding surfaces that are gently onlapped by seaward-dipping bed sets. Good correspondence is observed between a sequence of beach profiles, which record development of the berm ridge on the backshore, and the berm ridge's internal structure. The beach-profile data also indicate that backshore berm ridges at Aldeburgh owe their origin to discrete depositional episodes related to storm-wave activity. Beach-ridge plain deposits at the study site consist of a complex, progradational sequence of foreshore, berm-ridge, overtop and overwash deposits. Relict berm-ridge deposits, separated by seaward-dipping bounding surfaces, form the main depositional element beneath the beach-ridge plain. However, the beach ridges themselves are formed predominantly of vertically stacked overtop/overwash units, which lie above the berm-ridge deposits. Consequently, beach-ridge development in this progradational, mixed-beach setting must have occurred when conditions favoured overtopping and overwashing of the upper beachface. Interannual to decadal variations in wave climate, antecedent beach morphology, shoreline progradation rate and sea level are identified as the likely controlling factors in the development of such suitable conditions.

96 citations

Journal ArticleDOI
Abstract: Coastal steepening potentially presents an array of management issues in the form of financial implications of sea defence degradation, increased risk posed to the hinterland as wave attenuation is reduced, 'coastal squeeze' and statutory requirements in the light of the Habitats Directive. The extent to which coastal steepening has occurred throughout England and Wales has been investigated through use of a GIS and dataset based on historical Ordnance Survey map information. Data were collected along 1084 selected profile lines, positioned so as to be geomorphologically representative of the coast. Features recorded from each map year included the positions of mean high water (MHW) and mean low water (MLW), the relative movements of which infer changing intertidal gradients. The results presented in this paper are on a subject and scale not previously published. It is revealed that 61% of the coastline studied has experienced a tendency towards steepening. Of the remainder, 33% has flattened, and 6% has experienced no rotational movement. This tendency towards steepening has been the dominant movement on each of the west, south, and east coasts.

89 citations

Journal ArticleDOI
05 Feb 2016
TL;DR: In this article, the authors consider an emerging group of coastal management approaches that offer the potential to reduce coastal flood and erosion risks while also providing nature conservation, aesthetic and amenity benefits.
Abstract: This paper considers an emerging group of coastal management approaches that offer the potential to reduce coastal flood and erosion risks while also providing nature conservation, aesthetic and amenity benefits. These solutions mimic the characteristics of natural features, but are enhanced or created by man to provide specific services such as wave energy dissipation and erosion reduction. Such approaches can include beaches, dunes, saltmarshes, mangroves, sea grasses, coral and oyster reefs. The paper describes a number of innovative projects and the lessons learned in their development and implementation. These lessons include the planning, design and construction of projects, their development following implementation, the engagement of local communities and the cost-effectiveness of solutions.

76 citations


Cited by
More filters
Book Chapter
01 Jan 2007
TL;DR: Since the IPCC Third Assessment Report (TAR), our understanding of the implications of climate change for coastal systems and low-lying areas (henceforth referred to as "coasts") has increased substantially and six important policy-relevant messages have emerged as discussed by the authors.
Abstract: Since the IPCC Third Assessment Report (TAR), our understanding of the implications of climate change for coastal systems and low-lying areas (henceforth referred to as ‘coasts’) has increased substantially and six important policy-relevant messages have emerged. Coasts are experiencing the adverse consequences of hazards related to climate and sea level (very high confidence). Coasts are highly vulnerable to extreme events, such as storms, which impose substantial costs on coastal societies [6.2.1, 6.2.2, 6.5.2]. Annually, about 120 million people are exposed to tropical cyclone hazards, which killed 250,000 people from 1980 to 2000 [6.5.2]. Through the 20th century, global rise of sea level contributed to increased coastal inundation, erosion and ecosystem losses, but with considerable local and regional variation due to other factors [6.2.5, 6.4.1]. Late 20th century effects of rising temperature include loss of sea ice, thawing of permafrost and associated coastal retreat, and more frequent coral bleaching and mortality [6.2.5]. Coasts will be exposed to increasing risks, including coastal erosion, over coming decades due to climate change and sea-level rise (very high confidence). Anticipated climate-related changes include: an accelerated rise in sea level of up to 0.6 m or more by 2100; a further rise in sea surface temperatures by up to 3°C; an intensification of tropical and extratropical cyclones; larger extreme waves and storm surges; altered precipitation/run-off; and ocean acidification [6.3.2]. These phenomena will vary considerably at regional and local scales, but the impacts are virtually certain to be overwhelmingly negative [6.4, 6.5.3].

1,755 citations

Journal ArticleDOI
TL;DR: A ground-penetrating radar (GPR) is a noninvasive geophysical technique that detects electrical discontinuities in the shallow subsurface as mentioned in this paper, which can be used to detect electrical faults.

963 citations

Book ChapterDOI
01 Jan 2007
TL;DR: Abeku et al. as discussed by the authors presented a survey of the work of Abeku and his colleagues, including Isabelle Cote (Canada), Mark Dyurgerov (USA), Martin Edwards (UK), Kristie L. Ebi (US), Nicole Estrella (Germany), Donald L. MacMynowski (USA) and Patricia Morellato (Brazil), Jeff T. Price (USA).
Abstract: Contributing Authors: Tarekegn Abeku (Ethiopia), Isabelle Cote (Canada), Mark Dyurgerov (USA), Martin Edwards (UK), Kristie L. Ebi (USA), Nicole Estrella (Germany), Donald L. Forbes (Canada), Bernard Francou (France), Andrew Githeko (Kenya), Vivien Gornitz (USA), Wilfried Haeberli (Switzerland), John Hay (New Zealand), Anne Henshaw (USA), Terrence Hughes (Australia), Ana Iglesias (Spain), Georg Kaser (Austria), R. Sari Kovats (UK), Joseph Lam (China), Diana Liverman (UK), Dena P. MacMynowski (USA), Patricia Morellato (Brazil), Jeff T. Price (USA), Robert Muir-Wood (UK), Peter Neofotis (USA), Catherine O’Reilly (USA), Xavier Rodo (Spain), Tim Sparks (UK), Thomas Spencer (UK), David Viner (UK), Marta Vicarelli (Italy), Ellen Wiegandt (Switzerland), Qigang Wu (China), Ma Zhuguo (China)

746 citations

Ove Hoegh-Guldberg, Daniela Jacob, Marco Bindi, Sally Brown, I. A. Camilloni, Arona Diedhiou, Riyanti Djalante, Kristie L. Ebi1, Francois Engelbrecht1, Joel Guiot, Yasuaki Hijioka, S. Mehrotra, Antony J. Payne2, Sonia I. Seneviratne3, Adelle Thomas3, Rachel Warren4, G. Zhou4, Sharina Abdul Halim, Michelle Achlatis, Lisa V. Alexander, Myles R. Allen, Peter Berry, Christopher Boyer, Edward Byers, Lorenzo Brilli, Marcos Silveira Buckeridge, William W. L. Cheung, Marlies Craig, Neville Ellis, Jason P. Evans, Hubertus Fischer, Klaus Fraedrich, Sabine Fuss, Anjani Ganase, Jean-Pierre Gattuso, Peter Greve, Tania Guillén Bolaños, Naota Hanasaki, Tomoko Hasegawa, Katie Hayes, Annette L. Hirsch, Chris D. Jones, Thomas Jung, Markku Kanninen, Gerhard Krinner, David M. Lawrence, Timothy M. Lenton, Debora Ley, Diana Liverman, Natalie M. Mahowald, Kathleen L. McInnes, Katrin J. Meissner, Richard J. Millar, Katja Mintenbeck, Daniel M. Mitchell, Alan C. Mix, Dirk Notz, Leonard Nurse, Andrew Emmanuel Okem, Lennart Olsson, Michael Oppenheimer, Shlomit Paz, Juliane Petersen, Jan Petzold, Swantje Preuschmann, Mohammad Feisal Rahman, Joeri Rogelj, Hanna Scheuffele, Carl-Friedrich Schleussner, Daniel Scott, Roland Séférian, Jana Sillmann, Chandni Singh, Raphael Slade, Kimberly Stephenson, Tannecia S. Stephenson, Mouhamadou Bamba Sylla, Mark Tebboth, Petra Tschakert, Robert Vautard, Richard Wartenburger, Michael Wehner, Nora Marie Weyer, Felicia S. Whyte, Gary W. Yohe, Xuebin Zhang, Robert B. Zougmoré 
01 Jan 2018
TL;DR: In this article, the authors present a survey of women's sportswriters in South Africa and Ivory Coast, including: Marco Bindi (Italy), Sally Brown (UK), Ines Camilloni (Argentina), Arona Diedhiou (Ivory Coast/Senegal), Riyanti Djalante (Japan/Indonesia), Kristie L. Ebi (USA), Francois Engelbrecht (South Africa), Joel Guiot (France), Yasuaki Hijioka (Japan), Shagun Mehrotra (USA/India), Ant
Abstract: Lead Authors: Marco Bindi (Italy), Sally Brown (UK), Ines Camilloni (Argentina), Arona Diedhiou (Ivory Coast/Senegal), Riyanti Djalante (Japan/Indonesia), Kristie L. Ebi (USA), Francois Engelbrecht (South Africa), Joel Guiot (France), Yasuaki Hijioka (Japan), Shagun Mehrotra (USA/India), Antony Payne (UK), Sonia I. Seneviratne (Switzerland), Adelle Thomas (Bahamas), Rachel Warren (UK), Guangsheng Zhou (China)

614 citations

Journal ArticleDOI
TL;DR: A global-scale assessment of the occurrence of sandy beaches and rates of shoreline change therein is presented, using freely available optical satellite images captured since 1984 to identify the majority of the sandy shorelines in marine protected areas that are eroding.
Abstract: Coastal zones constitute one of the most heavily populated and developed land zones in the world. Despite the utility and economic benefits that coasts provide, there is no reliable global-scale assessment of historical shoreline change trends. Here, via the use of freely available optical satellite images captured since 1984, in conjunction with sophisticated image interrogation and analysis methods, we present a global-scale assessment of the occurrence of sandy beaches and rates of shoreline change therein. Applying pixel-based supervised classification, we found that 31% of the world’s ice-free shoreline are sandy. The application of an automated shoreline detection method to the sandy shorelines thus identified resulted in a global dataset of shoreline change rates for the 33 year period 1984–2016. Analysis of the satellite derived shoreline data indicates that 24% of the world’s sandy beaches are eroding at rates exceeding 0.5 m/yr, while 28% are accreting and 48% are stable. The majority of the sandy shorelines in marine protected areas are eroding, raising cause for serious concern.

599 citations