scispace - formally typeset
Search or ask a question
Author

Niklas Peinecke

Other affiliations: Leibniz University of Hanover
Bio: Niklas Peinecke is an academic researcher from German Aerospace Center. The author has contributed to research in topics: Radar & Cockpit. The author has an hindex of 12, co-authored 74 publications receiving 1464 citations. Previous affiliations of Niklas Peinecke include Leibniz University of Hanover.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper introduces a method to extract 'Shape-DNA', a numerical fingerprint or signature, of any 2d or 3d manifold by taking the eigenvalues (i.e. the spectrum) of its Laplace-Beltrami operator and succeeds in computing eigen values for smoothly bounded objects without discretization errors caused by approximation of the boundary.
Abstract: This paper introduces a method to extract 'Shape-DNA', a numerical fingerprint or signature, of any 2d or 3d manifold (surface or solid) by taking the eigenvalues (i.e. the spectrum) of its Laplace-Beltrami operator. Employing the Laplace-Beltrami spectra (not the spectra of the mesh Laplacian) as fingerprints of surfaces and solids is a novel approach. Since the spectrum is an isometry invariant, it is independent of the object's representation including parametrization and spatial position. Additionally, the eigenvalues can be normalized so that uniform scaling factors for the geometric objects can be obtained easily. Therefore, checking if two objects are isometric needs no prior alignment (registration/localization) of the objects but only a comparison of their spectra. In this paper, we describe the computation of the spectra and their comparison for objects represented by NURBS or other parametrized surfaces (possibly glued to each other), polygonal meshes as well as solid polyhedra. Exploiting the isometry invariance of the Laplace-Beltrami operator we succeed in computing eigenvalues for smoothly bounded objects without discretization errors caused by approximation of the boundary. Furthermore, we present two non-isometric but isospectral solids that cannot be distinguished by the spectra of their bodies and present evidence that the spectra of their boundary shells can tell them apart. Moreover, we show the rapid convergence of the heat trace series and demonstrate that it is computationally feasible to extract geometrical data such as the volume, the boundary length and even the Euler characteristic from the numerically calculated eigenvalues. This fact not only confirms the accuracy of our computed eigenvalues, but also underlines the geometrical importance of the spectrum. With the help of this Shape-DNA, it is possible to support copyright protection, database retrieval and quality assessment of digital data representing surfaces and solids. A patent application based on ideas presented in this paper is pending.

789 citations

Proceedings ArticleDOI
13 Jun 2005
TL;DR: This paper introduces a method to extract fingerprints of any surface or solid object by taking the eigenvalues of its respective Laplace-Beltrami operator, which is possible to support copyright protection, database retrieval and quality assessment of digital data representing surfaces and solids.
Abstract: This paper introduces a method to extract fingerprints of any surface or solid object by taking the eigenvalues of its respective Laplace-Beltrami operator. Using an object's spectrum (i.e. the family of its eigenvalues) as a fingerprint for its shape is motivated by the fact that the related eigenvalues are isometry invariants of the object. Employing the Laplace-Beltrami spectra (not the spectra of the mesh Laplacian) as fingerprints of surfaces and solids is a novel approach in the field of geometric modeling and computer graphics. Those spectra can be calculated for any representation of the geometric object (e.g. NURBS or any parametrized or implicitly represented surface or even for polyhedra). Since the spectrum is an isometry invariant of the respective object this fingerprint is also independent of the spatial position. Additionally the eigenvalues can be normalized so that scaling factors for the geometric object can be obtained easily. Therefore checking if two objects are isometric needs no prior alignment (registration/localization) of the objects, but only a comparison of their spectra. With the help of such fingerprints it is possible to support copyright protection, database retrieval and quality assessment of digital data representing surfaces and solids.

189 citations

Book ChapterDOI
29 Oct 2007
TL;DR: The Laplace-Beltrami spectrum is proposed to be used as a global shape descriptor for medical shape analysis, allowing for shape comparisons using minimal shape preprocessing: no registration, mapping, or remeshing is necessary.
Abstract: This paper proposes to use the Laplace-Beltrami spectrum (LBS) as a global shape descriptor for medical shape analysis, allowing for shape comparisons using minimal shape preprocessing: no registration, mapping, or remeshing is necessary. The discriminatory power of the method is tested on a population of female caudate shapes of normal control subjects and of subjects with schizotypal personality disorder.

94 citations

Journal ArticleDOI
TL;DR: A novel method to automatically obtain unique but easily computable fingerprints from an image based on a reinterpretation of an image as a Riemannian manifold, which allows better results in comparing the resulting spectra and deeper insights in the problems arising.
Abstract: In the area of image retrieval from data bases and for copyright protection of large image collections there is a growing demand for unique but easily computable fingerprints for images. These fingerprints can be used to quickly identify every image within a larger set of possibly similar images. This paper introduces a novel method to automatically obtain such fingerprints from an image. It is based on a reinterpretation of an image as a Riemannian manifold. This representation is feasible for gray value images and color images. We discuss the use of the spectrum of eigenvalues of different variants of the Laplace operator as a fingerprint and show the usability of this approach in several use cases. Contrary to existing works in this area we do not only use the discrete Laplacian, but also with a particular emphasis the underlying continuous operator. This allows better results in comparing the resulting spectra and deeper insights in the problems arising. We show how the well known discrete Laplacian is related to the continuous Laplace-Beltrami operator. Furthermore, we introduce the new concept of solid height functions to overcome some potential limitations of the method.

45 citations

Proceedings ArticleDOI
09 Dec 2008
TL;DR: This work describes an approach for simulating Lidar sensors based on using modern computer graphics hardware making heavy use of recent technologies like vertex and fragment shaders, and presents a vertex shader solution written in GLSL, the OpenGL shading language.
Abstract: Modern enhanced and synthetic vision systems (EVS/SVS) often make use of the fusion of multi-sensor data. Thus there is a demand for simulated sensor data in order to test and evaluate those systems at an early stage. We describe an approach for simulating Lidar sensors based on using modern computer graphics hardware making heavy use of recent technologies like vertex and fragment shaders. This approach has been successfully used for simulating millimeter wave radar sensors before. It is shown that a multi sensor simulation suite integrating such different sensors like millimeter wave radar, Lidar or infrared can be realized using principally similar software techniques thus allowing for a unified comprehensive simulator. This approach allows us to use a single consistent data base for multi sensor fusion. Recent graphics hardware offers the possibility of carrying out a variety of tasks in the graphical processing unit (GPU) as opposed to the traditional approach of doing most computations in the computerpsilas CPU. Using vertex and fragment shaders makes these tasks particularly easy. We present a vertex shader solution written in GLSL, the OpenGL shading language. The program computes all necessary view transformations and shading information necessary for Lidar simulation in one pass. This allows high frame rates for real time simulations of even complex flight scenes.

40 citations


Cited by
More filters
Journal ArticleDOI
15 Jul 2009
TL;DR: The Heat Kernel Signature, called the HKS, is obtained by restricting the well‐known heat kernel to the temporal domain and shows that under certain mild assumptions, HKS captures all of the information contained in the heat kernel, and characterizes the shape up to isometry.
Abstract: We propose a novel point signature based on the properties of the heat diffusion process on a shape. Our signature, called the Heat Kernel Signature (or HKS), is obtained by restricting the well-known heat kernel to the temporal domain. Remarkably we show that under certain mild assumptions, HKS captures all of the information contained in the heat kernel, and characterizes the shape up to isometry. This means that the restriction to the temporal domain, on the one hand, makes HKS much more concise and easily commensurable, while on the other hand, it preserves all of the information about the intrinsic geometry of the shape. In addition, HKS inherits many useful properties from the heat kernel, which means, in particular, that it is stable under perturbations of the shape. Our signature also provides a natural and efficiently computable multi-scale way to capture information about neighborhoods of a given point, which can be extremely useful in many applications. To demonstrate the practical relevance of our signature, we present several methods for non-rigid multi-scale matching based on the HKS and use it to detect repeated structure within the same shape and across a collection of shapes.

1,546 citations

Journal ArticleDOI
TL;DR: This article uses multiscale diffusion heat kernels as “geometric words” to construct compact and informative shape descriptors by means of the “bag of features” approach, and shows that shapes can be efficiently represented as binary codes.
Abstract: The computer vision and pattern recognition communities have recently witnessed a surge of feature-based methods in object recognition and image retrieval applications. These methods allow representing images as collections of “visual words” and treat them using text search approaches following the “bag of features” paradigm. In this article, we explore analogous approaches in the 3D world applied to the problem of nonrigid shape retrieval in large databases. Using multiscale diffusion heat kernels as “geometric words,” we construct compact and informative shape descriptors by means of the “bag of features” approach. We also show that considering pairs of “geometric words” (“geometric expressions”) allows creating spatially sensitive bags of features with better discriminative power. Finally, adopting metric learning approaches, we show that shapes can be efficiently represented as binary codes. Our approach achieves state-of-the-art results on the SHREC 2010 large-scale shape retrieval benchmark.

894 citations

Journal ArticleDOI
TL;DR: This paper introduces a method to extract 'Shape-DNA', a numerical fingerprint or signature, of any 2d or 3d manifold by taking the eigenvalues (i.e. the spectrum) of its Laplace-Beltrami operator and succeeds in computing eigen values for smoothly bounded objects without discretization errors caused by approximation of the boundary.
Abstract: This paper introduces a method to extract 'Shape-DNA', a numerical fingerprint or signature, of any 2d or 3d manifold (surface or solid) by taking the eigenvalues (i.e. the spectrum) of its Laplace-Beltrami operator. Employing the Laplace-Beltrami spectra (not the spectra of the mesh Laplacian) as fingerprints of surfaces and solids is a novel approach. Since the spectrum is an isometry invariant, it is independent of the object's representation including parametrization and spatial position. Additionally, the eigenvalues can be normalized so that uniform scaling factors for the geometric objects can be obtained easily. Therefore, checking if two objects are isometric needs no prior alignment (registration/localization) of the objects but only a comparison of their spectra. In this paper, we describe the computation of the spectra and their comparison for objects represented by NURBS or other parametrized surfaces (possibly glued to each other), polygonal meshes as well as solid polyhedra. Exploiting the isometry invariance of the Laplace-Beltrami operator we succeed in computing eigenvalues for smoothly bounded objects without discretization errors caused by approximation of the boundary. Furthermore, we present two non-isometric but isospectral solids that cannot be distinguished by the spectra of their bodies and present evidence that the spectra of their boundary shells can tell them apart. Moreover, we show the rapid convergence of the heat trace series and demonstrate that it is computationally feasible to extract geometrical data such as the volume, the boundary length and even the Euler characteristic from the numerically calculated eigenvalues. This fact not only confirms the accuracy of our computed eigenvalues, but also underlines the geometrical importance of the spectrum. With the help of this Shape-DNA, it is possible to support copyright protection, database retrieval and quality assessment of digital data representing surfaces and solids. A patent application based on ideas presented in this paper is pending.

789 citations

Proceedings ArticleDOI
04 Jul 2007
TL;DR: A deformation invariant representation of surfaces, the GPS embedding, is introduced using the eigenvalues and eigenfunctions of the Laplace-Beltrami differential operator, and the obtained representation is robust to local topology changes.
Abstract: A deformation invariant representation of surfaces, the GPS embedding, is introduced using the eigenvalues and eigenfunctions of the Laplace-Beltrami differential operator. Notably, since the definition of the GPS embedding completely avoids the use of geodesic distances, and is based on objects of global character, the obtained representation is robust to local topology changes. The GPS embedding captures enough information to handle various shape processing tasks as shape classification, segmentation, and correspondence. To demonstrate the practical relevance of the GPS embedding, we introduce a deformation invariant shape descriptor called G2-distributions, and demonstrate their discriminative power, invariance under natural deformations, and robustness.

674 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: A scale-invariant version of the heat kernel descriptor that can be used in the bag-of-features framework for shape retrieval in the presence of transformations such as isometric deformations, missing data, topological noise, and global and local scaling.
Abstract: One of the biggest challenges in non-rigid shape retrieval and comparison is the design of a shape descriptor that would maintain invariance under a wide class of transformations the shape can undergo. Recently, heat kernel signature was introduced as an intrinsic local shape descriptor based on diffusion scale-space analysis. In this paper, we develop a scale-invariant version of the heat kernel descriptor. Our construction is based on a logarithmically sampled scale-space in which shape scaling corresponds, up to a multiplicative constant, to a translation. This translation is undone using the magnitude of the Fourier transform. The proposed scale-invariant local descriptors can be used in the bag-of-features framework for shape retrieval in the presence of transformations such as isometric deformations, missing data, topological noise, and global and local scaling. We get significant performance improvement over state-of-the-art algorithms on recently established non-rigid shape retrieval benchmarks.

613 citations