scispace - formally typeset
Search or ask a question
Author

Nikolaos K. Pavlis

Other affiliations: STX Corporation
Bio: Nikolaos K. Pavlis is an academic researcher from National Geospatial-Intelligence Agency. The author has contributed to research in topics: Geoid & Geopotential model. The author has an hindex of 14, co-authored 27 publications receiving 4211 citations. Previous affiliations of Nikolaos K. Pavlis include STX Corporation.

Papers
More filters
Journal ArticleDOI
TL;DR: EGM2008 as mentioned in this paper is a spherical harmonic model of the Earth's gravitational potential, developed by a least squares combination of the ITG-GRACE03S gravitational model and its associated error covariance matrix, with the gravitational information obtained from a global set of area-mean free-air gravity anomalies defined on a 5 arc-minute equiangular grid.
Abstract: [1] EGM2008 is a spherical harmonic model of the Earth's gravitational potential, developed by a least squares combination of the ITG-GRACE03S gravitational model and its associated error covariance matrix, with the gravitational information obtained from a global set of area-mean free-air gravity anomalies defined on a 5 arc-minute equiangular grid This grid was formed by merging terrestrial, altimetry-derived, and airborne gravity data Over areas where only lower resolution gravity data were available, their spectral content was supplemented with gravitational information implied by the topography EGM2008 is complete to degree and order 2159, and contains additional coefficients up to degree 2190 and order 2159 Over areas covered with high quality gravity data, the discrepancies between EGM2008 geoid undulations and independent GPS/Leveling values are on the order of ±5 to ±10 cm EGM2008 vertical deflections over USA and Australia are within ±11 to ±13 arc-seconds of independent astrogeodetic values These results indicate that EGM2008 performs comparably with contemporary detailed regional geoid models EGM2008 performs equally well with other GRACE-based gravitational models in orbit computations Over EGM96, EGM2008 represents improvement by a factor of six in resolution, and by factors of three to six in accuracy, depending on gravitational quantity and geographic area EGM2008 represents a milestone and a new paradigm in global gravity field modeling, by demonstrating for the first time ever, that given accurate and detailed gravimetric data, asingle global model may satisfy the requirements of a very wide range of applications

1,755 citations

01 Jul 1998
TL;DR: The Earth Gravitational Model 1996 (EGM96) as discussed by the authors was developed by the NASA Goddard Space Flight Center (GSFC), the National Imagery and Mapping Agency (NIMA), and The Ohio State University (OSU) to develop an improved spherical harmonic model of the Earth's gravitational potential.
Abstract: The NASA Goddard Space Flight Center (GSFC), the National Imagery and Mapping Agency (NIMA), and The Ohio State University (OSU) have collaborated to develop an improved spherical harmonic model of the Earth's gravitational potential to degree 360. The new model, Earth Gravitational Model 1996 (EGM96), incorporates improved surface gravity data, altimeter-derived gravity anomalies from ERS-1 and from the GEOSAT Geodetic Mission (GM), extensive satellite tracking data-including new data from Satellite Laser Ranging (SLR), the Global Postioning System (GPS), NASA's Tracking and Data Relay Satellite System (TDRSS), the French DORIS system, and the US Navy TRANET Doppler tracking system-as well as direct altimeter ranges from TOPEX/POSEIDON (T/P), ERS-1, and GEOSAT. The final solution blends a low-degree combination model to degree 70, a block-diagonal solution from degree 71 to 359, and a quadrature solution at degree 360. The model was used to compute geoid undulations accurate to better than one meter (with the exception of areas void of dense and accurate surface gravity data) and realize WGS84 as a true three-dimensional reference system. Additional results from the EGM96 solution include models of the dynamic ocean topography to degree 20 from T/P and ERS-1 together, and GEOSAT separately, and improved orbit determination for Earth-orbiting satellites.

832 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The NASA Goddard Space Flight Center, the National Imagery and Mapping Agency (NIMA) and The Ohio State University have collaborated to produce EGM96, an improved degree 360 spherical harmonic model representing the Earth's gravitational potential as discussed by the authors.
Abstract: The NASA Goddard Space Flight Center, the National Imagery and Mapping Agency (NIMA; formerly the Defense Mapping Agency or DMA) and The Ohio State University have collaborated to produce EGM96, an improved degree 360 spherical harmonic model representing the Earth’s gravitational potential. This model was developed using: (1) satellite tracking data from more than 20 satellites, including new data from GPS and TDRSS, as well as altimeter data from TOPEX, GEOSAT and ERS-1. (2) 30’ x 30’ terrestrial gravity data from NIMA’s comprehensive archives, including new measurements from areas such as the former Soviet Union, South America, Africa, Greenland, and elsewhere. (3) 30’ x 30’ gravity anomalies derived from the GEOSAT Geodetic Mission altimeter data, as well as altimeter derived anomalies derived from ERS-1 by KMS (Kort and Matrikelstyrelsen, Denmark) in regions outside the GEOSAT coverage. The high degree solutions were developed using two different model estimation techniques: quadrature, and block diagonal. The final model is a composite solution consisting a combination solution to degree 70, a block diagonal solution to degree 359, and the quadrature model at degree 360. This new model will be used to define an undulation model that will be the basis for an update of the WGS-84 geoid. In addition, the model will contribute to oceanographic studies by improving the modeling of the ocean geoid and to geodetic positioning using the Global Positioning System (GPS).

391 citations

01 Aug 1991
TL;DR: In this article, a geosat data was processed to find corrections to the a priori geopotential model, corrections to a radial orbit error model for 76 Geosat arcs, and coefficients of a harmonic representation of the sea surface topography.
Abstract: The computation is described of a geopotential model to deg 360, a sea surface topography model to deg 10/15, and adjusted Geosat orbits for the first year of the exact repeat mission (ERM). This study started from the GEM-T2 potential coefficient model and it's error covariance matrix and Geosat orbits (for 22 ERMs) computed by Haines et al. using the GEM-T2 model. The first step followed the general procedures which use a radial orbit error theory originally developed by English. The Geosat data was processed to find corrections to the a priori geopotential model, corrections to a radial orbit error model for 76 Geosat arcs, and coefficients of a harmonic representation of the sea surface topography. The second stage of the analysis took place by doing a combination of the GEM-T2 coefficients with 30 deg gravity data derived from surface gravity data and anomalies obtained from altimeter data. The analysis has shown how a high degree spherical harmonic model can be determined combining the best aspects of two different analysis techniques. The error analysis was described that has led to the accuracy estimates for all the coefficients to deg 360. Significant work is needed to improve the modeling effort.

343 citations

Journal ArticleDOI
TL;DR: An improved Earth geopotential model, complete to spherical harmonic degree and order 70, has been determined by combining the Joint Gravity Model 1 (JGM 1) coefficients, and their associated error covariance, with new information from SLR, DORIS, and GPS tracking of TOPEX/Poseidon, laser tracking of LAGEOS 1, LS1, LS2, and Stella as discussed by the authors.
Abstract: An improved Earth geopotential model, complete to spherical harmonic degree and order 70, has been determined by combining the Joint Gravity Model 1 (JGM 1) geopotential coefficients, and their associated error covariance, with new information from SLR, DORIS, and GPS tracking of TOPEX/Poseidon, laser tracking of LAGEOS 1, LAGEOS 2, and Stella, and additional DORIS tracking of SPOT 2. The resulting field, JGM 3, which has been adopted for the TOPEX/Poseidon altimeter data rerelease, yields improved orbit accuracies as demonstrated by better fits to withheld tracking data and substantially reduced geographically correlated orbit error. Methods for analyzing the performance of the gravity field using high-precision tracking station positioning were applied. Geodetic results, including station coordinates and Earth orientation parameters, are significantly improved with the JGM 3 model. Sea surface topography solutions from TOPEX/Poseidon altimetry indicate that the ocean geoid has been improved. Subset solutions performed by withholding either the GPS data or the SLR/DORIS data were computed to demonstrate the effect of these particular data sets on the gravity model used for TOPEX/Poseidon orbit determination.

308 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Shuttle Radar Topography Mission produced the most complete, highest-resolution digital elevation model of the Earth, using dual radar antennas to acquire interferometric radar data, processed to digital topographic data at 1 arc sec resolution.
Abstract: [1] The Shuttle Radar Topography Mission produced the most complete, highest-resolution digital elevation model of the Earth. The project was a joint endeavor of NASA, the National Geospatial-Intelligence Agency, and the German and Italian Space Agencies and flew in February 2000. It used dual radar antennas to acquire interferometric radar data, processed to digital topographic data at 1 arc sec resolution. Details of the development, flight operations, data processing, and products are provided for users of this revolutionary data set.

5,019 citations

Journal ArticleDOI
TL;DR: In this article, the authors use output from hydrological, oceanographic, and atmospheric models to estimate the variability in the gravity field (i.e., in the geoid) due to those sources.
Abstract: The GRACE satellite mission, scheduled for launch in 2001, is designed to map out the Earth's gravity field to high accuracy every 2–4 weeks over a nominal lifetime of 5 years. Changes in the gravity field are caused by the redistribution of mass within the Earth and on or above its surface. GRACE will thus be able to constrain processes that involve mass redistribution. In this paper we use output from hydrological, oceanographic, and atmospheric models to estimate the variability in the gravity field (i.e., in the geoid) due to those sources. We develop a method for constructing surface mass estimates from the GRACE gravity coefficients. We show the results of simulations, where we use synthetic GRACE gravity data, constructed by combining estimated geophysical signals and simulated GRACE measurement errors, to attempt to recover hydrological and oceanographic signals. We show that GRACE may be able to recover changes in continental water storage and in seafloor pressure, at scales of a few hundred kilometers and larger and at timescales of a few weeks and longer, with accuracies approaching 2 mm in water thickness over land, and 0.1 mbar or better in seafloor pressure.

1,821 citations

Journal ArticleDOI
TL;DR: EGM2008 as mentioned in this paper is a spherical harmonic model of the Earth's gravitational potential, developed by a least squares combination of the ITG-GRACE03S gravitational model and its associated error covariance matrix, with the gravitational information obtained from a global set of area-mean free-air gravity anomalies defined on a 5 arc-minute equiangular grid.
Abstract: [1] EGM2008 is a spherical harmonic model of the Earth's gravitational potential, developed by a least squares combination of the ITG-GRACE03S gravitational model and its associated error covariance matrix, with the gravitational information obtained from a global set of area-mean free-air gravity anomalies defined on a 5 arc-minute equiangular grid This grid was formed by merging terrestrial, altimetry-derived, and airborne gravity data Over areas where only lower resolution gravity data were available, their spectral content was supplemented with gravitational information implied by the topography EGM2008 is complete to degree and order 2159, and contains additional coefficients up to degree 2190 and order 2159 Over areas covered with high quality gravity data, the discrepancies between EGM2008 geoid undulations and independent GPS/Leveling values are on the order of ±5 to ±10 cm EGM2008 vertical deflections over USA and Australia are within ±11 to ±13 arc-seconds of independent astrogeodetic values These results indicate that EGM2008 performs comparably with contemporary detailed regional geoid models EGM2008 performs equally well with other GRACE-based gravitational models in orbit computations Over EGM96, EGM2008 represents improvement by a factor of six in resolution, and by factors of three to six in accuracy, depending on gravitational quantity and geographic area EGM2008 represents a milestone and a new paradigm in global gravity field modeling, by demonstrating for the first time ever, that given accurate and detailed gravimetric data, asingle global model may satisfy the requirements of a very wide range of applications

1,755 citations

Journal ArticleDOI
TL;DR: In this article, a combination of high-density data from the dense mapping phases of Geosat and ERS 1 along with lower-density but higher-accuracy profiles from their repeat orbit phases is used to construct gravity anomalies from the two vertical deflection grids.
Abstract: Closely spaced satellite altimeter profiles collected during the Geosat Geodetic Mission (-6 km) and the ERS 1 Geodetic Phase (8 km) are easily converted to grids of vertical gravity gradient and gravity anomaly. The long-wavelength radial orbit error is suppressed below the noise level of the altimeter by taking the along-track derivative of each profile. Ascending and descending slope profiles are then interpolated onto separate uniform grids. These four grids are combined to form comparable grids of east and north vertical deflection using an iteration scheme that interpolates data gaps with minimum curvature. The vertical gravity gradient is calculated directly from the derivatives of the vertical deflection grids, while Fourier analysis is required to construct gravity anomalies from the two vertical deflection grids. These techniques are applied to a combination of high-density data from the dense mapping phases of Geosat and ERS 1 along with lower-density but higher-accuracy profiles from their repeat orbit phases. A comparison with shipboard gravity data shows the accuracy of the satellite- derived gravity anomaly is about 4-7 mGal for random ship tracks. The accuracy improves to 3 mGal when the ship track follows a Geosat Exact Repeat Mission track line. These data provide the first view of the ocean floor structures in many remote areas of the Earth. Some applications include inertial navigation, prediction of seafloor depth, planning shipboard surveys, plate tectonics, isostasy of volcanoes and spreading ridges, and petroleum exploration.

1,695 citations

Journal ArticleDOI
03 Oct 2014-Science
TL;DR: An extinct spreading ridge in the Gulf of Mexico, a major propagating rift in the South Atlantic Ocean, abyssal hill fabric on slow-spreading ridges, and thousands of previously uncharted seamounts are found.
Abstract: Gravity models are powerful tools for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. We combined new radar altimeter measurements from satellites CryoSat-2 and Jason-1 with existing data to construct a global marine gravity model that is two times more accurate than previous models. We found an extinct spreading ridge in the Gulf of Mexico, a major propagating rift in the South Atlantic Ocean, abyssal hill fabric on slow-spreading ridges, and thousands of previously uncharted seamounts. These discoveries allow us to understand regional tectonic processes and highlight the importance of satellite-derived gravity models as one of the primary tools for the investigation of remote ocean basins.

1,086 citations