scispace - formally typeset
Search or ask a question
Author

Nikolas Lessmann

Other affiliations: Utrecht University, Analysis Group
Bio: Nikolas Lessmann is an academic researcher from Radboud University Nijmegen. The author has contributed to research in topics: National Lung Screening Trial & Population. The author has an hindex of 14, co-authored 41 publications receiving 789 citations. Previous affiliations of Nikolas Lessmann include Utrecht University & Analysis Group.

Papers
More filters
Journal ArticleDOI
TL;DR: The presented method enables reliable automatic cardiovascular risk assessment in all low-dose chest CT scans acquired for lung cancer screening and is evaluated on a set of 1744 CT scans from the National Lung Screening Trial.
Abstract: Heavy smokers undergoing screening with low-dose chest CT are affected by cardiovascular disease as much as by lung cancer. Low-dose chest CT scans acquired in screening enable quantification of atherosclerotic calcifications and thus enable identification of subjects at increased cardiovascular risk. This paper presents a method for automatic detection of coronary artery, thoracic aorta, and cardiac valve calcifications in low-dose chest CT using two consecutive convolutional neural networks. The first network identifies and labels potential calcifications according to their anatomical location and the second network identifies true calcifications among the detected candidates. This method was trained and evaluated on a set of 1744 CT scans from the National Lung Screening Trial. To determine whether any reconstruction or only images reconstructed with soft tissue filters can be used for calcification detection, we evaluated the method on soft and medium/sharp filter reconstructions separately. On soft filter reconstructions, the method achieved F1 scores of 0.89, 0.89, 0.67, and 0.55 for coronary artery, thoracic aorta, aortic valve, and mitral valve calcifications, respectively. On sharp filter reconstructions, the F1 scores were 0.84, 0.81, 0.64, and 0.66, respectively. Linearly weighted kappa coefficients for risk category assignment based on per subject coronary artery calcium were 0.91 and 0.90 for soft and sharp filter reconstructions, respectively. These results demonstrate that the presented method enables reliable automatic cardiovascular risk assessment in all low-dose chest CT scans acquired for lung cancer screening.

159 citations

Journal ArticleDOI
TL;DR: An iterative instance segmentation approach that uses a fully convolutional neural network to segment and label vertebrae one after the other, independently of the number of visible vertebraes is proposed and compares favorably with state‐of‐the‐art methods.

149 citations

Journal ArticleDOI
TL;DR: The results demonstrate that automatic analysis of the LV myocardium in a single CCTA scan acquired at rest, without assessment of the anatomy of the coronary arteries, can be used to identify patients with functionally significant coronary artery stenosis, and may potentially reduce the number of patients undergoing unnecessary invasive FFR measurements.

148 citations

Journal ArticleDOI
TL;DR: A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population.
Abstract: Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method for automatic calcium scoring across a wide range of CT examination types and to investigate whether the method can adapt to different types of CT examinations when representative images are added to the existing training data set. Materials and Methods The study included 7240 participants who underwent various types of nonenhanced CT examinations that included the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC) were quantified using a convolutional neural network trained with (a) 1181 low-dose chest CT examinations (baseline), (b) a small set of examinations of the respective type supplemented to the baseline (data specific), and (c) a combination of examinations of all available types (combined). Supplemental training sets contained 199-568 CT images depending on the calcium burden of each population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual (Agatston) CAC and (volume) TAC scoring and with linearly weighted κ values for cardiovascular risk categories (Agatston score; cardiovascular disease risk categories: 0, 1-10, 11-100, 101-400, >400). Results At baseline, the DL algorithm yielded ICCs of 0.79-0.97 for CAC and 0.66-0.98 for TAC across the range of different types of CT examinations. ICCs improved to 0.84-0.99 (CAC) and 0.92-0.99 (TAC) for CT protocol-specific training and to 0.85-0.99 (CAC) and 0.96-0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the κ value for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI: 0.91, 0.93) for both data-specific and combined training. Conclusion A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol-specific images further improved algorithm performance. © RSNA, 2020 See also the editorial by Vannier in this issue.

133 citations

Journal ArticleDOI
TL;DR: The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations.

112 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

Journal ArticleDOI
TL;DR: Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels.
Abstract: Noise is inherent to low-dose CT acquisition We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images The performance of this discriminator was used as an adversarial loss for the generator Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images The phantom and patients were scanned at 20% and 100% routine clinical dose Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images However, CNNs trained with adversarial loss captured image statistics of routine-dose images better Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels Testing took less than 10 s per CT volume CNN-based low-dose CT noise reduction in the image domain is feasible Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images

781 citations

Journal ArticleDOI
TL;DR: The general principles of DL and convolutional neural networks are introduced, five major areas of application of DL in medical imaging and radiation therapy are surveyed, common themes are identified, methods for dataset expansion are discussed, and lessons learned, remaining challenges, and future directions are summarized.
Abstract: The goals of this review paper on deep learning (DL) in medical imaging and radiation therapy are to (a) summarize what has been achieved to date; (b) identify common and unique challenges, and strategies that researchers have taken to address these challenges; and (c) identify some of the promising avenues for the future both in terms of applications as well as technical innovations. We introduce the general principles of DL and convolutional neural networks, survey five major areas of application of DL in medical imaging and radiation therapy, identify common themes, discuss methods for dataset expansion, and conclude by summarizing lessons learned, remaining challenges, and future directions.

525 citations

Journal ArticleDOI
TL;DR: Fundamental steps for preparing medical imaging data in AI algorithm development are described, current limitations to data curation are explained, and new approaches to address the problem of data availability are explored.
Abstract: Supervised artificial intelligence (AI) methods for evaluation of medical images require a curation process for data to optimally train, validate, and test algorithms. The chief obstacles to develo...

449 citations

Journal ArticleDOI
TL;DR: Recent promising applications of AI in cardiology and cardiac imaging, which potentially add value to patient care are summarized.

327 citations