scispace - formally typeset
Search or ask a question
Author

Nikolaus A. Adams

Bio: Nikolaus A. Adams is an academic researcher from Technische Universität München. The author has contributed to research in topics: Turbulence & Large eddy simulation. The author has an hindex of 53, co-authored 408 publications receiving 11879 citations. Previous affiliations of Nikolaus A. Adams include École Polytechnique Fédérale de Lausanne & Center for Turbulence Research.


Papers
More filters
Journal ArticleDOI
TL;DR: An alternative approach to large-eddy simulation based on approximate deconvolution (ADM) is developed in this article, where the main ingredient is an approximation of the nonfiltered field by truncated series expansion of the inverse filter operator.
Abstract: An alternative approach to large-eddy simulation based on approximate deconvolution (ADM) is developed. The main ingredient is an approximation of the nonfiltered field by truncated series expansion of the inverse filter operator. A posteriori tests for decaying compressible isotropic turbulence show excellent agreement with direct numerical simulation. The computational overhead of ADM is similar to that of a scale-similarity model and considerably less than for dynamic models.

735 citations

Journal ArticleDOI
TL;DR: A multi-phase smoothed particle hydrodynamics (SPH) method for both macroscopic and mesoscopic flows is proposed, and a new simple algorithm capable for three or more immiscible phases is developed.

610 citations

Journal ArticleDOI
TL;DR: A new formulation of the boundary condition at static and moving solid walls in SPH simulations based on a local force balance between wall and fluid particles and applies a pressure boundary condition on the solid particles to prevent wall penetration.

539 citations

Journal ArticleDOI
TL;DR: In this article, an approximate deconvolution model for large-eddy simulation of incompressible flows is applied to turbulent channel flow and the effect of nonrepresented scales is modeled by a relaxation regularization involving a secondary filter operation.
Abstract: The approximate deconvolution model (ADM) for the large-eddy simulation of incompressible flows is detailed and applied to turbulent channel flow. With this approach an approximation of the unfiltered solution is obtained by repeated filtering. Given a good approximation of the unfiltered solution, the nonlinear terms of the filtered Navier–Stokes equations can be computed directly. The effect of nonrepresented scales is modeled by a relaxation regularization involving a secondary filter operation. Large-eddy simulations are performed for incompressible channel flow at Reynolds numbers based on the friction velocity and the channel half-width of Reτ=180 and Reτ=590. Both simulations compare well with direct numerical simulation (DNS) data and show a significant improvement over results obtained with classical subgrid scale models such as the standard or the dynamic Smagorinsky model. The computational cost of ADM is lower than that of dynamic models or the velocity estimation model.

517 citations

Journal ArticleDOI
TL;DR: In this paper, a class of upwindbiased finite-difference schemes with a compact stencil is proposed in general form, suitable for the time-accurate direct numerical simulation of fluid-convection problems.

493 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed, focusing on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied.
Abstract: In this review the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed. Emphasis is placed on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied.

4,070 citations

Journal ArticleDOI
TL;DR: To the best of our knowledge, there is only one application of mathematical modelling to face recognition as mentioned in this paper, and it is a face recognition problem that scarcely clamoured for attention before the computer age but, having surfaced, has attracted the attention of some fine minds.
Abstract: to be done in this area. Face recognition is a problem that scarcely clamoured for attention before the computer age but, having surfaced, has involved a wide range of techniques and has attracted the attention of some fine minds (David Mumford was a Fields Medallist in 1974). This singular application of mathematical modelling to a messy applied problem of obvious utility and importance but with no unique solution is a pretty one to share with students: perhaps, returning to the source of our opening quotation, we may invert Duncan's earlier observation, 'There is an art to find the mind's construction in the face!'.

3,015 citations

Book ChapterDOI
Chi-Wang Shu1
01 Jan 1998
TL;DR: In this paper, the authors describe the construction, analysis, and application of ENO and WENO schemes for hyperbolic conservation laws and related Hamilton-Jacobi equations, where the key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible.
Abstract: In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton-Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics.

2,005 citations