scispace - formally typeset
Search or ask a question
Author

Nikolaus Deigendesch

Bio: Nikolaus Deigendesch is an academic researcher from Max Planck Society. The author has contributed to research in topics: Innate immune system & Superoxide dismutase. The author has an hindex of 6, co-authored 7 publications receiving 3000 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction.
Abstract: Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease.

3,947 citations

Journal ArticleDOI
TL;DR: It is shown that NETs are induced by mitogens and accompanied by induction of cell-cycle markers, including phosphorylation of the retinoblastoma protein and lamins, nuclear envelope breakdown, and duplication of centrosomes, and that the response is inhibited by the cell- cycle inhibitor p21Cip.

140 citations

Journal ArticleDOI
07 Oct 2015-PLOS ONE
TL;DR: This study showed that blocking IL–1 is safe in patients with ALS, and further trials should test whether targeting IL-1 more efficiently can help treating this devastating disease.
Abstract: UNLABELLED Preclinical studies show that blocking Interleukin-1 (IL-1) retards the progression of Amyotrophic Lateral Sclerosis (ALS). We assessed the safety of Anakinra (ANA), an IL-1 receptor antagonist, in ALS patients. In a single arm pilot study we treated 17 ALS patients with ANA (100 mg) daily for one year. We selected patients with dominant or exclusive lower motor neuron degeneration (LMND) presentation, as peripheral nerves may be more accessible to the drug. Our primary endpoint was safety and tolerability. Secondary endpoints included measuring disease progression with the revised ALS functional rating scale (ALSFRSr). We also quantified serum inflammatory markers. For comparison, we generated a historical cohort of 47 patients that fit the criteria for enrollment, disease characteristics and rate of progression of the study group. Only mild adverse events occurred in ALS patients treated with ANA. Notably, we observed lower levels of cytokines and the inflammatory marker fibrinogen during the first 24 weeks of treatment. Despite of this, we could not detect a significant reduction in disease progression during the same period in patients treated with ANA compared to controls as measured by the ALSFRSr. In the second part of the treatment period we observed an increase in serum inflammatory markers. Sixteen out of the 17 patients (94%) developed antibodies against ANA. This study showed that blocking IL-1 is safe in patients with ALS. Further trials should test whether targeting IL-1 more efficiently can help treating this devastating disease. TRIAL REGISTRATION ClinicalTrials.gov NCT01277315.

43 citations

Journal ArticleDOI
TL;DR: It is demonstrated that NLRP3 inflammasome activation is blocked by removing copper from the active site of superoxide dismutase 1, recapitulating impaired inflammaome function insuperoxide dismUTase 1–deficient mice, indicating that targeting the intracellular copper homeostasis has potential for the treatment ofNLRP3-dependent diseases.
Abstract: Inflammasomes are multimeric protein complexes that are activated through a NOD-like receptor and regulate the proteolytic activation of caspase-1 and cytokines, like IL-1β. The NLRP3 inflammasome is implicated in many human pathologies including infections, autoinflammatory syndromes, chronic inflammation, and metabolic diseases; however, the molecular mechanisms of activation are not fully understood. In this study we show that NLRP3 inflammasome activation requires intracellular copper. A clinically approved copper chelator, tetrathiomolybdate, inhibited the canonical NLRP3 but not the AIM2, NLRC4, and NLRP1 inflammasomes or NF-κB–dependent priming. We demonstrate that NLRP3 inflammasome activation is blocked by removing copper from the active site of superoxide dismutase 1, recapitulating impaired inflammasome function in superoxide dismutase 1–deficient mice. This regulation is specific to macrophages, but not monocytes, both in mice and humans. In vivo, depletion of bioavailable copper resulted in attenuated caspase-1–dependent inflammation and reduced susceptibility to LPS-induced endotoxic shock. Our results indicate that targeting the intracellular copper homeostasis has potential for the treatment of NLRP3-dependent diseases.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Whether therapies to modulate inflammageing can reduce the age-related decline in health is discussed, and the hypothesis that inflammation affects CVD, multimorbidity, and frailty is supported by mechanistic studies but requires confirmation in humans.
Abstract: Most older individuals develop inflammageing, a condition characterized by elevated levels of blood inflammatory markers that carries high susceptibility to chronic morbidity, disability, frailty, and premature death. Potential mechanisms of inflammageing include genetic susceptibility, central obesity, increased gut permeability, changes to microbiota composition, cellular senescence, NLRP3 inflammasome activation, oxidative stress caused by dysfunctional mitochondria, immune cell dysregulation, and chronic infections. Inflammageing is a risk factor for cardiovascular diseases (CVDs), and clinical trials suggest that this association is causal. Inflammageing is also a risk factor for chronic kidney disease, diabetes mellitus, cancer, depression, dementia, and sarcopenia, but whether modulating inflammation beneficially affects the clinical course of non-CVD health problems is controversial. This uncertainty is an important issue to address because older patients with CVD are often affected by multimorbidity and frailty — which affect clinical manifestations, prognosis, and response to treatment — and are associated with inflammation by mechanisms similar to those in CVD. The hypothesis that inflammation affects CVD, multimorbidity, and frailty by inhibiting growth factors, increasing catabolism, and interfering with homeostatic signalling is supported by mechanistic studies but requires confirmation in humans. Whether early modulation of inflammageing prevents or delays the onset of cardiovascular frailty should be tested in clinical trials. Inflammageing is a chronic, pro-inflammatory state that develops with age and is a risk factor for cardiovascular disease, comorbidities, frailty, and death. In this Review, Ferrucci and Fabbri discuss whether therapies to modulate inflammageing can reduce the age-related decline in health.

1,428 citations

Journal ArticleDOI
22 Jun 2018-Science
TL;DR: It is demonstrated that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine, and it is shown that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures.
Abstract: Disorders of the brain can exhibit considerable epidemiological comorbidity and often share symptoms, provoking debate about their etiologic overlap. We quantified the genetic sharing of 25 brain disorders from genome-wide association studies of 265,218 patients and 784,643 control participants and assessed their relationship to 17 phenotypes from 1,191,588 individuals. Psychiatric disorders share common variant risk, whereas neurological disorders appear more distinct from one another and from the psychiatric disorders. We also identified significant sharing between disorders and a number of brain phenotypes, including cognitive measures. Further, we conducted simulations to explore how statistical power, diagnostic misclassification, and phenotypic heterogeneity affect genetic correlations. These results highlight the importance of common genetic variation as a risk factor for brain disorders and the value of heritability-based methods in understanding their etiology.

1,357 citations

Journal ArticleDOI
01 May 2019-Nature
TL;DR: Single-cell transcriptomics from 48 individuals with varying degrees of Alzheimer's disease pathology demonstrates that gene-expression changes in Alzheimer’s disease are both cell-type specific and shared, and that transcriptional responses show sexual dimorphism.
Abstract: Alzheimer’s disease is a pervasive neurodegenerative disorder, the molecular complexity of which remains poorly understood. Here, we analysed 80,660 single-nucleus transcriptomes from the prefrontal cortex of 48 individuals with varying degrees of Alzheimer’s disease pathology. Across six major brain cell types, we identified transcriptionally distinct subpopulations, including those associated with pathology and characterized by regulators of myelination, inflammation, and neuron survival. The strongest disease-associated changes appeared early in pathological progression and were highly cell-type specific, whereas genes upregulated at late stages were common across cell types and primarily involved in the global stress response. Notably, we found that female cells were overrepresented in disease-associated subpopulations, and that transcriptional responses were substantially different between sexes in several cell types, including oligodendrocytes. Overall, myelination-related processes were recurrently perturbed in multiple cell types, suggesting that myelination has a key role in Alzheimer’s disease pathophysiology. Our single-cell transcriptomic resource provides a blueprint for interrogating the molecular and cellular basis of Alzheimer’s disease. Single-cell transcriptomics from 48 individuals with varying degrees of Alzheimer’s disease pathology demonstrates that gene-expression changes in Alzheimer’s disease are both cell-type specific and shared, and that transcriptional responses show sexual dimorphism.

1,318 citations

Journal ArticleDOI
TL;DR: This review outlines etiologically-linked pathologic features of Alzheimer's disease, as well as those that are inevitable findings of uncertain significance, such as granulovacuolar degeneration and Hirano bodies.
Abstract: Alzheimer’s disease is a progressive neurodegenerative disease most often associated with memory deficits and cognitive decline, although less common clinical presentations are increasingly recognized. The cardinal pathological features of the disease have been known for more than one hundred years, and today the presence of these amyloid plaques and neurofibrillary tangles are still required for a pathological diagnosis. Alzheimer’s disease is the most common cause of dementia globally. There remain no effective treatment options for the great majority of patients, and the primary causes of the disease are unknown except in a small number of familial cases driven by genetic mutations. Confounding efforts to develop effective diagnostic tools and disease-modifying therapies is the realization that Alzheimer’s disease is a mixed proteinopathy (amyloid and tau) frequently associated with other age-related processes such as cerebrovascular disease and Lewy body disease. Defining the relationships between and interdependence of various co-pathologies remains an active area of investigation. This review outlines etiologically-linked pathologic features of Alzheimer’s disease, as well as those that are inevitable findings of uncertain significance, such as granulovacuolar degeneration and Hirano bodies. Other disease processes that are frequent, but not inevitable, are also discussed, including pathologic processes that can clinically mimic Alzheimer’s disease. These include cerebrovascular disease, Lewy body disease, TDP-43 proteinopathies and argyrophilic grain disease. The purpose of this review is to provide an overview of Alzheimer’s disease pathology, its defining pathologic substrates and the related pathologies that can affect diagnosis and treatment.

1,228 citations

Journal ArticleDOI
11 Feb 2016-Cell
TL;DR: Evidence supporting a long, complex cellular phase consisting of feedback and feedforward responses of astrocytes, microglia, and vasculature is reviewed.

1,191 citations