scispace - formally typeset
Search or ask a question
Author

Nikolay Kuznetsov

Bio: Nikolay Kuznetsov is an academic researcher from Saint Petersburg State University. The author has contributed to research in topics: Attractor & Phase-locked loop. The author has an hindex of 45, co-authored 424 publications receiving 8961 citations. Previous affiliations of Nikolay Kuznetsov include Moscow State University & Saint Petersburg State Polytechnic University.


Papers
More filters
Journal ArticleDOI
TL;DR: The problem of investigating hidden oscillations arose in the second part of Hilbert's 16th problem (1900), and the first nontrivial results were obtained in Bautin's works, which revealed no similar transient processes leading to such attractors.
Abstract: From a computational point of view, in nonlinear dynamical systems, attractors can be regarded as self-excited and hidden attractors. Self-excited attractors can be localized numerically by a standard computational procedure, in which after a transient process a trajectory, starting from a point of unstable manifold in a neighborhood of equilibrium, reaches a state of oscillation, therefore one can easily identify it. In contrast, for a hidden attractor, a basin of attraction does not intersect with small neighborhoods of equilibria. While classical attractors are self-excited, attractors can therefore be obtained numerically by the standard computational procedure. For localization of hidden attractors it is necessary to develop special procedures, since there are no similar transient processes leading to such attractors. At first, the problem of investigating hidden oscillations arose in the second part of Hilbert's 16th problem (1900). The first nontrivial results were obtained in Bautin's works, which...

750 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed to use a special analytical-numerical algorithm to locate hidden attractors of Chua's circuit. But this algorithm does not consider the hidden attractor of the neighborhood of equilibrium.

605 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations, and also describe numerical methods which allow identification of the hidden attractor.

569 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that hidden oscillations can exist not only in systems with piecewise-linear nonlinearity but also in smooth systems with a smooth characteristic of nonlinear element.

470 citations

Journal ArticleDOI
TL;DR: In this paper, a self-excited and hidden attractor for a Lorenz-like system derived from the well-known Glukhovsky-Dolghansky and Rabinovich systems was analyzed.
Abstract: In this paper, we discuss self-excited and hidden attractors for systems of differential equations. We considered the example of a Lorenz-like system derived from the well-known Glukhovsky-Dolghansky and Rabinovich systems, to demonstrate the analysis of self-excited and hidden attractors and their characteristics. We applied the fishing principle to demonstrate the existence of a homoclinic orbit, proved the dissipativity and completeness of the system, and found absorbing and positively invariant sets. We have shown that this system has a self-excited attractor and a hidden attractor for certain parameters. The upper estimates of the Lyapunov dimension of self-excited and hidden attractors were obtained analytically.

352 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
01 Jan 1991
TL;DR: In this paper, the Third Edition of the Third edition of Linear Systems: Local Theory and Nonlinear Systems: Global Theory (LTLT) is presented, along with an extended version of the second edition.
Abstract: Series Preface * Preface to the Third Edition * 1 Linear Systems * 2 Nonlinear Systems: Local Theory * 3 Nonlinear Systems: Global Theory * 4 Nonlinear Systems: Bifurcation Theory * References * Index

1,977 citations

Journal ArticleDOI
TL;DR: 5. M. Green, J. Schwarz, and E. Witten, Superstring theory, and An interpretation of classical Yang-Mills theory, Cambridge Univ.
Abstract: 5. M. Green, J. Schwarz, and E. Witten, Superstring theory, Cambridge Univ. Press, 1987. 6. J. Isenberg, P. Yasskin, and P. Green, Non-self-dual gauge fields, Phys. Lett. 78B (1978), 462-464. 7. B. Kostant, Graded manifolds, graded Lie theory, and prequantization, Differential Geometric Methods in Mathematicas Physics, Lecture Notes in Math., vol. 570, SpringerVerlag, Berlin and New York, 1977. 8. C. LeBrun, Thickenings and gauge fields, Class. Quantum Grav. 3 (1986), 1039-1059. 9. , Thickenings and conformai gravity, preprint, 1989. 10. C. LeBrun and M. Rothstein, Moduli of super Riemann surfaces, Commun. Math. Phys. 117(1988), 159-176. 11. Y. Manin, Critical dimensions of string theories and the dualizing sheaf on the moduli space of (super) curves, Funct. Anal. Appl. 20 (1987), 244-245. 12. R. Penrose and W. Rindler, Spinors and space-time, V.2, spinor and twistor methods in space-time geometry, Cambridge Univ. Press, 1986. 13. R. Ward, On self-dual gauge fields, Phys. Lett. 61A (1977), 81-82. 14. E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett. 77NB (1978), 394-398. 15. , Twistor-like transform in ten dimensions, Nucl. Phys. B266 (1986), 245-264. 16. , Physics and geometry, Proc. Internat. Congr. Math., Berkeley, 1986, pp. 267302, Amer. Math. Soc, Providence, R.I., 1987.

1,252 citations