scispace - formally typeset
Search or ask a question
Author

Nikos Mamoulis

Bio: Nikos Mamoulis is an academic researcher from University of Ioannina. The author has contributed to research in topics: Joins & Spatial query. The author has an hindex of 56, co-authored 282 publications receiving 11121 citations. Previous affiliations of Nikos Mamoulis include University of Hong Kong & Max Planck Society.


Papers
More filters
Proceedings ArticleDOI
24 Aug 2014
TL;DR: A framework, based on possible-worlds semantics, that computes a set of representative clusterings, each of which has a probabilistic guarantee not to exceed some maximum distance to the ground truth clustering, i.e., the clustering of the actual (but unknown) data.
Abstract: This paper targets the problem of computing meaningful clusterings from uncertain data sets Existing methods for clustering uncertain data compute a single clustering without any indication of its quality and reliability; thus, decisions based on their results are questionable In this paper, we describe a framework, based on possible-worlds semantics; when applied on an uncertain dataset, it computes a set of representative clusterings, each of which has a probabilistic guarantee not to exceed some maximum distance to the ground truth clustering, ie, the clustering of the actual (but unknown) data Our framework can be combined with any existing clustering algorithm and it is the first to provide quality guarantees about its result In addition, our experimental evaluation shows that our representative clusterings have a much smaller deviation from the ground truth clustering than existing approaches, thus reducing the effect of uncertainty

35 citations

Journal ArticleDOI
TL;DR: Novel solutions to the general optimal route query are proposed, based on two different methodologies, namely backward search and forward search, in which the route only needs to cover a subset of the given categories.
Abstract: Given a set of spatial points DS, each of which is associated with categorical information, e.g., restaurant, pub, etc., the optimal route query finds the shortest path that starts from the query point (e.g., a home or hotel), and covers a user-specified set of categories (e.g., {pub, restaurant, museum}). The user may also specify partial order constraints between different categories, e.g., a restaurant must be visited before a pub. Previous work has focused on a special case where the query contains the total order of all categories to be visited (e.g., museum → restaurant → pub). For the general scenario without such a total order, the only known solution reduces the problem to multiple, total-order optimal route queries. As we show in this paper, this naive approach incurs a significant amount of repeated computations, and, thus, is not scalable to large data sets. Motivated by this, we propose novel solutions to the general optimal route query, based on two different methodologies, namely backward search and forward search. In addition, we discuss how the proposed methods can be adapted to answer a variant of the optimal route queries, in which the route only needs to cover a subset of the given categories. Extensive experiments, using both real and synthetic data sets, confirm that the proposed solutions are efficient and practical, and outperform existing methods by large margins.

35 citations

Journal ArticleDOI
01 Jan 2014
TL;DR: This work proposes an indexing technique, paired with an on-line reverse top-k search algorithm, that is efficient and has manageable storage requirements even when applied on very large graphs.
Abstract: With the increasing popularity of social networks, large volumes of graph data are becoming available. Large graphs are also derived by structure extraction from relational, text, or scientific data (e.g., relational tuple networks, citation graphs, ontology networks, protein-protein interaction graphs). Node-to-node proximity is the key building block for many graph-based applications that search or analyze the data. Among various proximity measures, random walk with restart (RWR) is widely adopted because of its ability to consider the global structure of the whole network. Although RWR-based similarity search has been well studied before, there is no prior work on reverse top-k proximity search in graphs based on RWR. We discuss the applicability of this query and show that its direct evaluation using existing methods on RWR-based similarity search has very high computational and storage demands. To address this issue, we propose an indexing technique, paired with an on-line reverse top-k search algorithm. Our experiments show that our technique is efficient and has manageable storage requirements even when applied on very large graphs.

35 citations

Journal ArticleDOI
TL;DR: This paper proposes methods that compute all top-k queries in batch that applies the block indexed nested loops paradigm and a view-based algorithm, and proposes appropriate optimization techniques for the two approaches.
Abstract: Given a set of objects P and a set of ranking functions F over P, an interesting problem is to compute the top ranked objects for all functions Evaluation of multiple top-k queries finds application in systems, where there is a heavy workload of ranking queries (eg, online search engines and product recommendation systems) The simple solution of evaluating the top-k queries one-by-one does not scale well; instead, the system can make use of the fact that similar queries share common results to accelerate search This paper is the first, to our knowledge, thorough study of this problem We propose methods that compute all top-k queries in batch Our first solution applies the block indexed nested loops paradigm, while our second technique is a view-based algorithm We propose appropriate optimization techniques for the two approaches and demonstrate experimentally that the second approach is consistently the best Our approach facilitates evaluation of other complex queries that depend on the computation of multiple top-k queries, such as reverse top-k and top-m influential queries We show that our batch processing technique for these complex queries outperform the state-of-the-art by orders of magnitude

34 citations

Proceedings ArticleDOI
08 Apr 2013
TL;DR: How to derive an axis-parallel hyper-rectangle (called the Uncertain Bounding Rectangle, or UBR) that tightly contains a PV-cell is studied, and the PV-index, a structure that stores UBRs, is developed to evaluate probabilistic nearest neighbor queries over uncertain data.
Abstract: In Voronoi-based nearest neighbor search, the Voronoi cell of every point p in a database can be used to check whether p is the closest to some query point q. We extend the notion of Voronoi cells to support uncertain objects, whose attribute values are inexact. Particularly, we propose the Possible Voronoi cell (or PV-cell). A PV-cell of a multi-dimensional uncertain object o is a region R, such that for any point pϵR, o may be the nearest neighbor of p. If the PV-cells of all objects in a database S are known, they can be used to identify objects that have a chance to be the nearest neighbor of q. However, there is no efficient algorithm for computing an exact PV-cell. We hence study how to derive an axis-parallel hyper-rectangle (called the Uncertain Bounding Rectangle, or UBR) that tightly contains a PV-cell. We further develop the PV-index, a structure that stores UBRs, to evaluate probabilistic nearest neighbor queries over uncertain data. An advantage of the PV-index is that upon updates on S, it can be incrementally updated. Extensive experiments on both synthetic and real datasets are carried out to validate the performance of the PV-index.

34 citations


Cited by
More filters
01 Jan 2002

9,314 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

01 Jan 2006
TL;DR: There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99].
Abstract: The book Knowledge Discovery in Databases, edited by Piatetsky-Shapiro and Frawley [PSF91], is an early collection of research papers on knowledge discovery from data. The book Advances in Knowledge Discovery and Data Mining, edited by Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy [FPSSe96], is a collection of later research results on knowledge discovery and data mining. There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99], Building Data Mining Applications for CRM by Berson, Smith, and Thearling [BST99], Data Mining: Practical Machine Learning Tools and Techniques by Witten and Frank [WF05], Principles of Data Mining (Adaptive Computation and Machine Learning) by Hand, Mannila, and Smyth [HMS01], The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman [HTF01], Data Mining: Introductory and Advanced Topics by Dunham, and Data Mining: Multimedia, Soft Computing, and Bioinformatics by Mitra and Acharya [MA03]. There are also books containing collections of papers on particular aspects of knowledge discovery, such as Machine Learning and Data Mining: Methods and Applications edited by Michalski, Brakto, and Kubat [MBK98], and Relational Data Mining edited by Dzeroski and Lavrac [De01], as well as many tutorial notes on data mining in major database, data mining and machine learning conferences.

2,591 citations

Journal Article
TL;DR: In this article, the authors explore the effect of dimensionality on the nearest neighbor problem and show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance of the farthest data point.
Abstract: We explore the effect of dimensionality on the nearest neighbor problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance to the farthest data point. To provide a practical perspective, we present empirical results on both real and synthetic data sets that demonstrate that this effect can occur for as few as 10-15 dimensions. These results should not be interpreted to mean that high-dimensional indexing is never meaningful; we illustrate this point by identifying some high-dimensional workloads for which this effect does not occur. However, our results do emphasize that the methodology used almost universally in the database literature to evaluate high-dimensional indexing techniques is flawed, and should be modified. In particular, most such techniques proposed in the literature are not evaluated versus simple linear scan, and are evaluated over workloads for which nearest neighbor is not meaningful. Often, even the reported experiments, when analyzed carefully, show that linear scan would outperform the techniques being proposed on the workloads studied in high (10-15) dimensionality!.

1,992 citations