Author
Nil Goyette
Bio: Nil Goyette is an academic researcher from Université de Sherbrooke. The author has contributed to research in topics: Change detection & Video processing. The author has an hindex of 2, co-authored 2 publications receiving 809 citations.
Papers
More filters
16 Jun 2012
TL;DR: A unique change detection benchmark dataset consisting of nearly 90,000 frames in 31 video sequences representing 6 categories selected to cover a wide range of challenges in 2 modalities (color and thermal IR).
Abstract: Change detection is one of the most commonly encountered low-level tasks in computer vision and video processing. A plethora of algorithms have been developed to date, yet no widely accepted, realistic, large-scale video dataset exists for benchmarking different methods. Presented here is a unique change detection benchmark dataset consisting of nearly 90,000 frames in 31 video sequences representing 6 categories selected to cover a wide range of challenges in 2 modalities (color and thermal IR). A distinguishing characteristic of this dataset is that each frame is meticulously annotated for ground-truth foreground, background, and shadow area boundaries — an effort that goes much beyond a simple binary label denoting the presence of change. This enables objective and precise quantitative comparison and ranking of change detection algorithms. This paper presents and discusses various aspects of the new dataset, quantitative performance metrics used, and comparative results for over a dozen previous and new change detection algorithms. The dataset, evaluation tools, and algorithm rankings are available to the public on a website1 and will be updated with feedback from academia and industry in the future.
800 citations
TL;DR: Various aspects of the new data set, quantitative performance metrics used, and comparative results for over two dozen change detection algorithms are discussed, including important conclusions on solved and remaining issues in change detection, and future challenges for the scientific community are described.
Abstract: Change detection is one of the most commonly encountered low-level tasks in computer vision and video processing. A plethora of algorithms have been developed to date, yet no widely accepted, realistic, large-scale video data set exists for benchmarking different methods. Presented here is a unique change detection video data set consisting of nearly 90000 frames in 31 video sequences representing six categories selected to cover a wide range of challenges in two modalities (color and thermal infrared). A distinguishing characteristic of this benchmark video data set is that each frame is meticulously annotated by hand for ground-truth foreground, background, and shadow area boundaries-an effort that goes much beyond a simple binary label denoting the presence of change. This enables objective and precise quantitative comparison and ranking of video-based change detection algorithms. This paper discusses various aspects of the new data set, quantitative performance metrics used, and comparative results for over two dozen change detection algorithms. It draws important conclusions on solved and remaining issues in change detection, and describes future challenges for the scientific community. The data set, evaluation tools, and algorithm rankings are available to the public on a website
1
and will be updated with feedback from academia and industry in the future.
84 citations
Cited by
More filters
University of Ljubljana1, University of Birmingham2, Czech Technical University in Prague3, Linköping University4, Austrian Institute of Technology5, Carnegie Mellon University6, Parthenope University of Naples7, University of Isfahan8, Autonomous University of Madrid9, University of Ottawa10, University of Oxford11, Hong Kong Baptist University12, Kyiv Polytechnic Institute13, Middle East Technical University14, Hacettepe University15, King Abdullah University of Science and Technology16, Pohang University of Science and Technology17, University of Nottingham18, University at Albany, SUNY19, Chinese Academy of Sciences20, Dalian University of Technology21, Xi'an Jiaotong University22, Indian Institute of Space Science and Technology23, Hong Kong University of Science and Technology24, ASELSAN25, Australian National University26, Commonwealth Scientific and Industrial Research Organisation27, University of Missouri28, University of Verona29, Universidade Federal de Itajubá30, United States Naval Research Laboratory31, Marquette University32, Graz University of Technology33, Naver Corporation34, Imperial College London35, Electronics and Telecommunications Research Institute36, Zhejiang University37, University of Surrey38, Harbin Institute of Technology39, Lehigh University40
TL;DR: The Visual Object Tracking challenge VOT2016 goes beyond its predecessors by introducing a new semi-automatic ground truth bounding box annotation methodology and extending the evaluation system with the no-reset experiment.
Abstract: The Visual Object Tracking challenge VOT2016 aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 70 trackers are presented, with a large number of trackers being published at major computer vision conferences and journals in the recent years. The number of tested state-of-the-art trackers makes the VOT 2016 the largest and most challenging benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the Appendix. The VOT2016 goes beyond its predecessors by (i) introducing a new semi-automatic ground truth bounding box annotation methodology and (ii) extending the evaluation system with the no-reset experiment. The dataset, the evaluation kit as well as the results are publicly available at the challenge website (http://votchallenge.net).
744 citations
23 Jun 2014
TL;DR: The latest release of the changedetection.net dataset is presented, which includes 22 additional videos spanning 5 new categories that incorporate challenges encountered in many surveillance settings and highlights strengths and weaknesses of these methods and identifies remaining issues in change detection.
Abstract: Change detection is one of the most important lowlevel tasks in video analytics. In 2012, we introduced the changedetection.net (CDnet) benchmark, a video dataset devoted to the evalaution of change and motion detection approaches. Here, we present the latest release of the CDnet dataset, which includes 22 additional videos (70; 000 pixel-wise annotated frames) spanning 5 new categories that incorporate challenges encountered in many surveillance settings. We describe these categories in detail and provide an overview of the results of more than a dozen methods submitted to the IEEE Change DetectionWorkshop 2014. We highlight strengths and weaknesses of these methods and identify remaining issues in change detection.
680 citations
07 Dec 2015
TL;DR: The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance and presents a new VOT 2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute.
Abstract: The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2015 challenge that go beyond its VOT2014 predecessor are: (i) a new VOT2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2014 evaluation methodology by introduction of a new performance measure. The dataset, the evaluation kit as well as the results are publicly available at the challenge website.
667 citations
TL;DR: The purpose of this paper is to provide a complete survey of the traditional and recent approaches to background modeling for foreground detection, and categorize the different approaches in terms of the mathematical models used.
Abstract: Background modeling for foreground detection is often used in different applications
to model the background and then detect the moving objects in the scene like in video
surveillance. The last decade witnessed very significant publications in this field. Furthermore,
several surveys can be found in literature but none of them addresses an overall
review in this field. So, the purpose of this paper is to provide a complete survey
of the traditional and recent approaches. First, we categorize the different approaches
found in literature. We have classified them in terms of the mathematical models used
and we have discussed them in terms of the critical situations that they claim to handle.
Furthermore, we present the available resources, datasets and libraries. Then, we
conclude with several promising directions for future research.
664 citations
23 Jan 2019
TL;DR: The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative; results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years.
Abstract: The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).
639 citations