scispace - formally typeset
Search or ask a question
Author

Nilanjana Banerjee

Bio: Nilanjana Banerjee is an academic researcher. The author has contributed to research in topics: Exome & Medicine. The author has an hindex of 7, co-authored 7 publications receiving 335 citations.

Papers
More filters
Journal ArticleDOI
21 Oct 2020-Nature
TL;DR: The release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants, illustrating the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes and demonstrating the value of genome sequencing in large population-based studies.
Abstract: The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world1. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97%) had at least one carrier with a LOF variant, and most genes (more than 69%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenic BRCA1 and BRCA2 variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community. Exome sequences from the first 49,960 participants in the UK Biobank highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.

320 citations

Journal ArticleDOI
18 Oct 2021-Nature
TL;DR: This paper used exome sequencing to explore protein altering variants and their consequences in 454,787 UK Biobank study participants and identified 12 million coding variants, including ~1 million loss-of-function and ~1.8 million deleterious missense variants.
Abstract: A major goal in human genetics is to use natural variation to understand the phenotypic consequences of altering each protein-coding gene in the genome. Here we used exome sequencing1 to explore protein altering variants and their consequences in 454,787 UK Biobank study participants2. We identified 12 million coding variants, including ~1 million loss-of-function and ~1.8 million deleterious missense variants. When these were tested for association with 3,994 health-related traits, we found 564 genes with trait associations at P≤2.18x10-11. Rare variant associations were enriched in GWAS loci, but most (91%) were independent of common variant signals. We discover several risk-increasing associations with traits related to liver disease, eye disease and cancer, among others, as well as novel risk-lowering associations for hypertension (SLC9A3R2), diabetes (MAP3K15, FAM234A) and asthma (SLC27A3). Six genes were associated with brain imaging phenotypes, including two involved in neural development (GBE1, PLD1). 81% of signals available and powered for replication were confirmed in an independent cohort; furthermore, association signals were generally consistent across European, Asian and African ancestry individuals. We illustrate the ability of exome sequencing to identify novel gene-trait associations, elucidate gene function, and pinpoint effector genes underlying GWAS signals at scale.

217 citations

01 Jan 2020
TL;DR: In this paper, the authors report results from a genome-wide association studies (GWAS) meta-analysis of heart failure comprising 47,309 cases and 930,014 controls.
Abstract: Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.Heart failure is a complex syndrome that is associated with many different underlying risk factors. Here, to increase power, the authors jointly analyse cases of heart failure of different aetiologies in a genome-wide association study and identify 11 loci of which ten had not been previously reported.

201 citations

Posted ContentDOI
09 Mar 2019-bioRxiv
TL;DR: The first tranche of large-scale exome sequence data for 49,960 study participants is described, revealing approximately 4 million coding variants and 231,631 predicted loss of function variants, a >10-fold increase compared to imputed sequence for the same participants.
Abstract: SUMMARY The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world. Here we describe the first tranche of large-scale exome sequence data for 49,960 study participants, revealing approximately 4 million coding variants (of which ~98.4% have frequency 10-fold increase compared to imputed sequence for the same participants. Nearly all genes (>97%) had ≥1 predicted loss of function carrier, and most genes (>69%) had ≥10 loss of function carriers. We illustrate the power of characterizing loss of function variation in this large population through association analyses across 1,741 phenotypes. In addition to replicating a range of established associations, we discover novel loss of function variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical significance in this population, finding that 2% of the population has a medically actionable variant. Additionally, we leverage the phenotypic data to characterize the relationship between rare BRCA1 and BRCA2 pathogenic variants and cancer risk. Exomes from the first 49,960 participants are now made accessible to the scientific community and highlight the promise offered by genomic sequencing in large-scale population-based studies.

123 citations

Journal ArticleDOI
Julie Horowitz, Jack A. Kosmicki, Amy Damask, Deepika Sharma, Genevieve H.L. Roberts, Anne E. Justice, Nilanjana Banerjee, Marie V. Coignet, Ashish Yadav, Joseph B. Leader, Anthony Marcketta, Danny S. Park, Evan Maxwell, Spencer C. Knight, Xiaodong Bai, Harendra Guturu, Dylan Sun, Asher Baltzell, Fabrício S. P. Kury, Joshua D. Backman, Ahna R. Girshick, Colm O'Dushlaine, Shannon McCurdy, Raghavendran Partha, Adam Mansfield, David A. Turissini, Miao Zhang, Joelle Mbatchou, Kyoko Watanabe, Lauren Gurski, Shane McCarthy, L. Dobbyn, Elisabeth Stahl, Anurag Verma, Giorgio Sirugo, Giovanni Coppola, Andrew Deubler, Aris Bass Economides, Katia Karalis, Luca A. Lotta, Alan R. Shuldiner, Christina Beechert, Caitlin Forsythe, Erin D. Fuller, Zhenhua Gu, Michael Lattari, Alexander Lopez, Maria Sotiropoulos Padilla, Manasi Pradhan, Kia Manoochehri, Thomas D. Schleicher, Louis Widom, Sarah E. Wolf, Ricardo H. Ulloa, Amelia Dadong Sameer Jeffrey Averitt Li Malhotra Staples, Amelia J Averitt, Dadong Li, Sameer Malhotra, Suying Bao, Boris Boutkov, Siying Chen, Gi Seon Eom, Alicia Hawes, Shareef Khalid, Olga A. Krasheninina, George Mitra, Mona Nafde, Sean O’Keeffe, Max Orelus, Razvan Panea, Tommy Polanco, Ayesha Ghulam Rasool, Jeffrey Staples, Kathie Sun, Jiwen Xin, Manuel A. R. Ferreira, Arkopravo Ghosh, Christopher Gillies, Eric Jorgenson, Hyun Min Kang, Michael Kessler, Alexander H. Li, Nan Lin, Daren Liu, Adam E. Locke, Arden Moscati, Charles Paulding, Carlo Sidore, Bin Ye, B. Zhang, Andrey Ziyatdinov, Ariane Ayer, Aysegul Guvenek, George Hindy, Jan Freudenberg, Jonas Bovijn, Kavita Praveen, Manav Kapoor, M. Haas, Moeen Riaz, Niek Verweij, Olukayode A. Sosina, Parsa Akbari, Priyanka Nakka, Sahar Gelfman, Sujit Gokhale, Tanima De, Veera M. Rajagopal, Gannie Tzoneva, Juan L. Rodriguez-Flores, Shek Man Chim, Valerio Donato, Daniel Fernandez, G. Della Gatta, Alessandro Di Gioia, Kristen Michelle Howell, Lori Khrimian, Minhee Kim, Hector Martinez, Lawrence Miloscio, Sheilyn Nunez, Elias Pavlopoulos, Trikaldarshi Persaud, Esteban Marcus B. Michelle G. Jason Lyndon J. Nirupama Nad Chen Jones LeBlanc Mighty Mitnaul Nishtala Rana, Esteban Chen, Michelle G. LeBlanc, Jason Mighty, Lyndon J. Mitnaul, N. Sudhir Nishtala, N. Rana, Marylyn D. Ritchie, Marcus B. Jones, Suganthi Balasubramanian, Katherine A. Siminovitch, William J Salerno, Daniel J. Rader, Tooraj Mirshahi, Jonathan Marchini, John D. Overton, David J. Carey, Lukas Habegger, Michael Cantor, Kristin A. Rand, Eurie L. Hong, Jeffrey G. Reid, Catherine A. Ball, Aris Baras, Gonçalo R. Abecasis 
TL;DR: In this article , the authors identify a variant (rs190509934, minor allele frequency 0.2-2%) that downregulates ACE2 expression by 37% and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10 − 13 ).
Abstract: Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2–2%) that downregulates ACE2 expression by 37% ( P = 2.7 × 10 − 8 ) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10 − 13 ), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1 , MHC, DPP9 and IFNAR2 ). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone.

64 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
Daniel Taliun1, Daniel N. Harris2, Michael D. Kessler2, Jedidiah Carlson1  +202 moreInstitutions (61)
10 Feb 2021-Nature
TL;DR: The Trans-Omics for Precision Medicine (TOPMed) project as discussed by the authors aims to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases.
Abstract: The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1 In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals) These rare variants provide insights into mutational processes and recent human evolutionary history The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 001% The goals, resources and design of the NHLBI Trans-Omics for Precision Medicine (TOPMed) programme are described, and analyses of rare variants detected in the first 53,831 samples provide insights into mutational processes and recent human evolutionary history

801 citations

Posted ContentDOI
Daniel Taliun1, Daniel N. Harris2, Michael D. Kessler2, Jedidiah Carlson1  +191 moreInstitutions (61)
06 Mar 2019-bioRxiv
TL;DR: The nearly complete catalog of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and non-coding sequence variants to phenotypic variation as well as resources and early insights from the sequence data.
Abstract: Summary paragraph The Trans-Omics for Precision Medicine (TOPMed) program seeks to elucidate the genetic architecture and disease biology of heart, lung, blood, and sleep disorders, with the ultimate goal of improving diagnosis, treatment, and prevention. The initial phases of the program focus on whole genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here, we describe TOPMed goals and design as well as resources and early insights from the sequence data. The resources include a variant browser, a genotype imputation panel, and sharing of genomic and phenotypic data via dbGaP. In 53,581 TOPMed samples, >400 million single-nucleotide and insertion/deletion variants were detected by alignment with the reference genome. Additional novel variants are detectable through assembly of unmapped reads and customized analysis in highly variable loci. Among the >400 million variants detected, 97% have frequency

662 citations

Journal ArticleDOI
08 Jul 2021-Nature
TL;DR: In this article, the role of human genetics in SARS-CoV-2 infection and COVID-19 severity was investigated and the results of three genome-wide association meta-analyses were presented.
Abstract: The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3-7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.

485 citations

Journal ArticleDOI
08 Jan 2020-Nature
TL;DR: Progress is described in the study of human genetics, in which rapid advances in technology, foundational genomic resources and analytical tools have contributed to the understanding of the mechanisms responsible for many rare and common diseases and to preventative and therapeutic strategies for many of these conditions.
Abstract: A primary goal of human genetics is to identify DNA sequence variants that influence biomedical traits, particularly those related to the onset and progression of human disease. Over the past 25 years, progress in realizing this objective has been transformed by advances in technology, foundational genomic resources and analytical tools, and by access to vast amounts of genotype and phenotype data. Genetic discoveries have substantially improved our understanding of the mechanisms responsible for many rare and common diseases and driven development of novel preventative and therapeutic strategies. Medical innovation will increasingly focus on delivering care tailored to individual patterns of genetic predisposition.

356 citations