scispace - formally typeset
Search or ask a question
Author

Nilda de Fátima Ferreira Soares

Bio: Nilda de Fátima Ferreira Soares is an academic researcher from Universidade Federal de Viçosa. The author has contributed to research in topics: Active packaging & Food packaging. The author has an hindex of 35, co-authored 135 publications receiving 4665 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The main synthesis methods of ZnO nanoparticles, principal characteristics and mechanisms of antimicrobial action as well as the effect of their incorporation in polymeric matrices are discussed in this paper.
Abstract: Zinc oxide (ZnO) is an inorganic compound widely used in everyday applications. ZnO is currently listed as a generally recognized as safe (GRAS) material by the Food and Drug Administration and is used as food additive. The advent of nanotechnology has led the development of materials with new properties for use as antimicrobial agents. Thus, ZnO in nanoscale has shown antimicrobial properties and potential applications in food preservation. ZnO nanoparticles have been incorporated in polymeric matrices in order to provide antimicrobial activity to the packaging material and improve packaging properties. This review presents the main synthesis methods of ZnO nanoparticles, principal characteristics and mechanisms of antimicrobial action as well as the effect of their incorporation in polymeric matrices. Safety issues such as exposure routes and migration studies are also discussed.

977 citations

Journal ArticleDOI
TL;DR: Pectin is one of the main components of the plant cell wall chemically constituted by poly α 1−4-galacturonic acids as mentioned in this paper and is used as gelling, stabilizing, or thickening agent in food products such as jams, yoghurt drinks, fruity milk drinks, and ice cream.

466 citations

Journal ArticleDOI
TL;DR: In this paper, an edible antimicrobial coating based on a starch-chitosan matrix was developed to evaluate its effect on minimally processed carrot by means of microbiological analyses.

197 citations

Journal ArticleDOI
TL;DR: Both essential oils lessened the counts of yeasts and molds in sliced bread during 15 days, and droplet size reduction provided a further improvement in antimicrobial properties.
Abstract: Consumers are increasingly demanding foods with lower synthetic preservatives. Plant essential oils are natural compounds with remarkable antimicrobial properties and may be incorporated as emulsions into water-soluble polymers to form antimicrobial films. Coarse emulsions (diameters of 1.3–1.9 μm) and nanoemulsions (diameters of 180–250 nm) of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils were produced through low-speed mixing and ultrasonication, respectively. Methylcellulose was added for film-forming purposes. Both essential oils reduced the rigidity and increased the extensibility of the methylcellulose films, effects that were even more pronounced for nanodroplets. Both essential oils lessened the counts of yeasts and molds in sliced bread during 15 days, and droplet size reduction provided a further improvement in antimicrobial properties. Due to increased bioavailability, less preservative content might be used and still deliver the same antimicrobial efficiency if ...

188 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination,ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration.
Abstract: Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.

2,627 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes progress in nanocellulose preparation with a particular focus on microfibrillated cellulose and also discusses recent developments in bio-nanocomposite fabrication based on nanocells.
Abstract: Due to their abundance, high strength and stiffness, low weight and biodegradability, nano-scale cellulose fiber materials (e.g., microfibrillated cellulose and bacterial cellulose) serve as promising candidates for bio-nanocomposite production. Such new high-value materials are the subject of continuing research and are commercially interesting in terms of new products from the pulp and paper industry and the agricultural sector. Cellulose nanofibers can be extracted from various plant sources and, although the mechanical separation of plant fibers into smaller elementary constituents has typically required high energy input, chemical and/or enzymatic fiber pre-treatments have been developed to overcome this problem. A challenge associated with using nanocellulose in composites is the lack of compatibility with hydrophobic polymers and various chemical modification methods have been explored in order to address this hurdle. This review summarizes progress in nanocellulose preparation with a particular focus on microfibrillated cellulose and also discusses recent developments in bio-nanocomposite fabrication based on nanocellulose.

2,546 citations

Journal ArticleDOI
TL;DR: The most important methods of preparation of ZnO divided into metallurgical and chemical methods are presented and possible applications in various branches of industry: rubber, pharmaceutical, cosmetics, textile, electronic and electrotechnology, photocatalysis were introduced.
Abstract: Zinc oxide can be called a multifunctional material thanks to its unique physical and chemical properties. The first part of this paper presents the most important methods of preparation of ZnO divided into metallurgical and chemical methods. The mechanochemical process, controlled precipitation, sol-gel method, solvothermal and hydrothermal method, method using emulsion and microemulsion enviroment and other methods of obtaining zinc oxide were classified as chemical methods. In the next part of this review, the modification methods of ZnO were characterized. The modification with organic (carboxylic acid, silanes) and inroganic (metal oxides) compounds, and polymer matrices were mainly described. Finally, we present possible applications in various branches of industry: rubber, pharmaceutical, cosmetics, textile, electronic and electrotechnology, photocatalysis were introduced. This review provides useful information for specialist dealings with zinc oxide.

1,790 citations

Journal ArticleDOI
TL;DR: The methods of making nanoparticles using plant extracts are reviewed, methods of particle characterization are reviewed and potential applications of the particles in medicine are discussed.

1,706 citations

Journal ArticleDOI
TL;DR: A review of different types of antimicrobial polymers developed for food contact, commercial applications, testing methods, regulations and future trends is presented in this article, with a special emphasis on the advantages/disadvantages of each technology.
Abstract: Research and development of antimicrobial materials for food applications such as packaging and other food contact surfaces is expected to grow in the next decade with the advent of new polymer materials and antimicrobials. This article reviews the different types of antimicrobial polymers developed for food contact, commercial applications, testing methods, regulations and future trends. Special emphasis will be on the advantages/disadvantages of each technology.

1,491 citations