scispace - formally typeset
Search or ask a question
Author

Niloufer J. Chinoy

Bio: Niloufer J. Chinoy is an academic researcher. The author has contributed to research in topics: Fluoride. The author has an hindex of 1, co-authored 1 publications receiving 58 citations.
Topics: Fluoride

Papers
More filters
Journal ArticleDOI
TL;DR: Fluoride has long been known to influence the activity of various enzymes in vitro as mentioned in this paper, with far-reaching consequences for our understanding of fundamental biological processes, and it has been demonstrated that many effects primarily attributed to fluoride are caused by synergistic action of fluoride plus aluminum.
Abstract: Fluoride has long been known to influence the activity of various enzymes in vitro. Later it has been demonstrated that many effects primarily attributed to fluoride are caused by synergistic action of fluoride plus aluminum. Aluminofluoride complexes have been widely used as analogues of phosphate groups to study phosphoryl transfer reactions and heterotrimeric G proteins involvement. A num- ber of reports on their use have appeared, with far-reaching consequences for our understanding of fundamental biological processes. Fluoride plus aluminum send false messages, which are amplified by processes of signal transduction. Many investigations of the long- term administration of fluoride to laboratory animals have demonstrated that fluoride and aluminofluoride complexes can elicit impair- ment of homeostasis, growth, development, cognition, and behavior. Ameliorative effects of calcium, vitamins C, D, and E have been re- ported. Numerous epidemiological, ecological, and clinical studies have shown the effects of fluoride on humans. Millions of people live in endemic fluorosis areas. A review of fluoride interactions from molecules to disease is necessary for a sound scientific assessment of health risks, which may be linked to the chronic intake of small doses of fluoride and aluminum from environmental and artificial sources.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The hypothesis that Al significantly contributes to AD is built upon very solid experimental evidence and should not be dismissed, and immediate steps should be taken to lessen human exposure to Al, which may be the single most aggravating and avoidable factor related to AD.
Abstract: The brain is a highly compartmentalized organ exceptionally susceptible to accumulation of metabolic errors. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease of the elderly and is characterized by regional specificity of neural aberrations associated with higher cognitive functions. Aluminum (Al) is the most abundant neurotoxic metal on earth, widely bioavailable to humans and repeatedly shown to accumulate in AD-susceptible neuronal foci. In spite of this, the role of Al in AD has been heavily disputed based on the following claims: 1) bioavailable Al cannot enter the brain in sufficient amounts to cause damage, 2) excess Al is efficiently excreted from the body, and 3) Al accumulation in neurons is a consequence rather than a cause of neuronal loss. Research, however, reveals that: 1) very small amounts of Al are needed to produce neurotoxicity and this criterion is satisfied through dietary Al intake, 2) Al sequesters different transport mechanisms to actively traverse brain barriers, 3) incremental acquisition of small amounts of Al over a lifetime favors its selective accumulation in brain tissues, and 4) since 1911, experimental evidence has repeatedly demonstrated that chronic Al intoxication reproduces neuropathological hallmarks of AD. Misconceptions about Al bioavailability may have misled scientists regarding the significance of Al in the pathogenesis of AD. The hypothesis that Al significantly contributes to AD is built upon very solid experimental evidence and should not be dismissed. Immediate steps should be taken to lessen human exposure to Al, which may be the single most aggravating and avoidable factor related to AD.

321 citations

Journal ArticleDOI
TL;DR: A comprehensive and critical review of the effects of fluoride ions and organofluorine compounds (mainly pharmaceuticals and agrochemicals) on human health and the environment is presented in this article.
Abstract: Over the last 100-120 years, due to the ever-increasing importance of fluorine-containing compounds in modern technology and daily life, the explosive development of the fluorochemical industry led to an enormous increase of emission of fluoride ions into the biosphere. This made it more and more important to understand the biological activities, metabolism, degradation, and possible environmental hazards of such substances. This comprehensive and critical review focuses on the effects of fluoride ions and organofluorine compounds (mainly pharmaceuticals and agrochemicals) on human health and the environment. To give a better overview, various connected topics are also discussed: reasons and trends of the advance of fluorine-containing pharmaceuticals and agrochemicals, metabolism of fluorinated drugs, withdrawn fluorinated drugs, natural sources of organic and inorganic fluorine compounds in the environment (including the biosphere), sources of fluoride intake, and finally biomarkers of fluoride exposure.

129 citations

Journal ArticleDOI
TL;DR: It is suggested that environmental and dietary excitotoxins, mercury, fluoride, and aluminum can exacerbate the pathological and clinical problems by worsening excitOToxicity and by microglial priming.
Abstract: Despite the great number of observations being made concerning cellular and the molecular dysfunctions associated with autism spectrum disorders (ASD), the basic central mechanism of these disorders has not been proposed in the major scientific literature. Our review brings evidence that most heterogeneous symptoms of ASD have a common set of events closely connected with dysregulation of glutamatergic neurotransmission in the brain with enhancement of excitatory receptor function by pro-inflammatory immune cytokines as the underlying mechanism. We suggest that environmental and dietary excitotoxins, mercury, fluoride, and aluminum can exacerbate the pathological and clinical problems by worsening excitotoxicity and by microglial priming. In addition, each has effects on cell signaling that can affect neurodevelopment and neuronal function. Our hypothesis opens the door to a number of new treatment modes, including the nutritional factors that naturally reduce excitotoxicity and brain inflammation.

119 citations

Journal ArticleDOI
TL;DR: The present study reviews the mechanisms of F− ingestion from possible sources and exposures, correlating possible health effects by extensively surveying the literature and describes extensive in vivo or in vitro studies of F − ingestion in laboratory animals and the correlation ofF− exposure with several health effects.
Abstract: Fluoride (F−) originating from many natural geologic sources and anthropogenic activities has imposed a substantial environmental health risk. More than 200 million people from more than 35 nations...

86 citations

Journal ArticleDOI
02 Sep 2014-PLOS ONE
TL;DR: The profile of protein expression in the gastrocnemius muscle of rats with streptozotocin-induced diabetes that were chronically exposed to F indicates an increase in IR, which might worsen diabetes.
Abstract: Administration of high doses of fluoride (F) can alter glucose homeostasis and lead to insulin resistance (IR). This study determined the profile of protein expression in the gastrocnemius muscle of rats with streptozotocin-induced diabetes that were chronically exposed to F. Male Wistar rats (60 days old) were randomly distributed into two groups of 18 animals. In one group, diabetes was induced through the administration of streptozotocin. Each group (D-diabetic and ND-non-diabetic) was further divided into 3 subgroups each of which was exposed to a different F concentration via drinking water (0 ppm, 10 ppm or 50 ppm F, as NaF). After 22 days of treatment, the gastrocnemius muscle was collected and submitted to proteomic analysis (2D-PAGE followed by LC-MS/MS). Protein functions were classified by the GO biological process (ClueGO v2.0.7+Clupedia v1.0.8) and protein-protein interaction networks were constructed (PSICQUIC, Cytoscape). Quantitative intensity analysis of the proteomic data revealed differential expression of 75 spots for ND0 vs. D0, 76 for ND10 vs.D10, 58 spots for ND50 vs. D50, 52 spots for D0 vs. D10 and 38 spots for D0 vs. D50. The GO annotations with the most significant terms in the comparisons of ND0 vs. D0, ND10 vs. D10, ND50 vs. D50, D0 vs. D10 and D0 vs. D50, were muscle contraction, carbohydrate catabolic processes, generation of precursor metabolites and energy, NAD metabolic processes and gluconeogenesis, respectively. Analysis of subnetworks revealed that, in all comparisons, proteins with fold changes interacted with GLUT4. GLUT4 interacting proteins, such as MDH and the stress proteins HSPB8 and GRP78, exhibited decreased expression when D animals were exposed to F. The presence of the two stress proteins indicates an increase in IR, which might worsen diabetes. Future studies should evaluate whether diabetic animals treated with F have increased IR, as well as which molecular mechanisms are involved.

78 citations