scispace - formally typeset
Search or ask a question
Author

Nils Christian Stenseth

Bio: Nils Christian Stenseth is an academic researcher from University of Oslo. The author has contributed to research in topics: Population & Gadus. The author has an hindex of 44, co-authored 162 publications receiving 6456 citations. Previous affiliations of Nils Christian Stenseth include Spanish National Research Council & Tsinghua University.


Papers
More filters
Journal ArticleDOI
TL;DR: How the match/mismatch hypothesis (MMH) is used to describe climate effects on ecological patterns and processes in both marine and terrestrial systems is reviewed and expanded on to include effects of overall production level and the spatial aspect.
Abstract: Climate influences a population through a variety of processes, including reproduction, growth, migration patterns and phenology. Climate may operate either directly through metabolic and reproductive processes or indirectly through prey, predators, and competitors. One mechanism that may be particularly important, and which is the focus of this review, is the role of climate in affecting the reproductive success of a predator through its effect on the relative timing of food requirement and food availability during early life stages. This principle — the match or mismatch of predators' requirement with resource availability — originated in the marine literature, where it ini- tially referred to how growth and survival of fish larvae (predator) depends on this production being synchronous with that of their main food items, i.e. early stage zooplankton (prey). Here we review how the match/mismatch hypothesis (MMH) is used to describe climate effects on ecological patterns and processes in both marine and terrestrial systems. In addition to studying match/mismatch sensu stricto, we expand on it to include effects of overall production level and the spatial aspect. Possible impacts of climate change on match/mismatch are examined in the context of one of the most appar- ent effects of global warming: an advancement of spring phenology. As a consequence of different species reacting dissimilarly, even minor changes in climate may invoke non-linear responses unbal- ancing established patterns of synchrony. All components of a food chain cannot be expected to shift their phenology at the same rate, and thus are unlikely to remain synchronous.

792 citations

Journal ArticleDOI
10 Aug 2011-Nature
TL;DR: The genome sequence of Atlantic cod is presented, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates.
Abstract: The genome of the Atlantic cod has been sequenced, and genomic analysis reveals an immune system that differs significantly from that in other vertebrates. The major histocompatibility complex (MHC) II has been lost, as have some other genes that are essential for MHC II function. But there is an expansion in the number of MHC I genes and a unique composition for its toll-like receptor family. These compensatory changes in both adaptive and innate immunity mean that cod is no more susceptible to disease than most other vertebrates. These findings challenge current models of vertebrate immune evolution, and may facilitate the development of targeted vaccines for disease management in aquaculture. Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture1,2. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates3,4, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions5. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.

702 citations

Journal ArticleDOI
TL;DR: Ecosystem oceanography aims at developing realistic and robust models at different levels of organisation and addressing specific questions in a global change context while systematically exploring the ever-increasing amount of biological and environmental data.
Abstract: Overexploitation and climate change are increasingly causing unanticipated changes in marine ecosystems, such as higher variability in fish recruitment and shifts in species dominance. An ecosystem-based approach to fisheries attempts to address these effects by integrating populations, food webs and fish habitats at different scales. Ecosystem models represent indispensable tools to achieve this objective. However, a balanced research strategy is needed to avoid overly complex models. Ecosystem oceanography represents such a balanced strategy that relates ecosystem components and their interactions to climate change and exploitation. It aims at developing realistic and robust models at different levels of organisation and addressing specific questions in a global change context while systematically exploring the ever-increasing amount of biological and environmental data.

302 citations

Journal ArticleDOI
10 Feb 2017-Science
TL;DR: Conservation efforts are currently in a state of transition, with active debate about the relative importance of preserving historical landscapes with minimal human impact on one end of the ideological spectrum versus manipulating novel ecosystems that result from human activities on the other.
Abstract: BACKGROUND The pace and magnitude of human-caused global change has accelerated dramatically over the past 50 years, overwhelming the capacity of many ecosystems and species to maintain themselves as they have under the more stable conditions that prevailed for at least 11,000 years. The next few decades threaten even more rapid transformations because by 2050, the human population is projected to grow by 3 billion while simultaneously increasing per capita consumption. Thus, to avoid losing many species and the crucial aspects of ecosystems that we need—for both our physical and emotional well-being—new conservation paradigms and integration of information from conservation biology, paleobiology, and the Earth sciences are required. ADVANCES Rather than attempting to hold ecosystems to an idealized conception of the past, as has been the prevailing conservation paradigm until recently, maintaining vibrant ecosystems for the future now requires new approaches that use both historical and novel conservation landscapes, enhance adaptive capacity for ecosystems and organisms, facilitate connectedness, and manage ecosystems for functional integrity rather than focusing entirely on particular species. Scientific breakthroughs needed to underpin such a paradigm shift are emerging at the intersection of ecology and paleobiology, revealing (i) which species and ecosystems will need human intervention to persist; (ii) how to foster population connectivity that anticipates rapidly changing climate and land use; (iii) functional attributes that characterize ecosystems through thousands to millions of years, irrespective of the species that are involved; and (iv) the range of compositional and functional variation that ecosystems have exhibited over their long histories. Such information is necessary for recognizing which current changes foretell transitions to less robust ecological states and which changes may signal benign ecosystem shifts that will cause no substantial loss of ecosystem function or services. Conservation success will also increasingly hinge on choosing among different, sometimes mutually exclusive approaches to best achieve three conceptually distinct goals: maximizing biodiversity, maximizing ecosystem services, and preserving wilderness. These goals vary in applicability depending on whether historical or novel ecosystems are the conservation target. Tradeoffs already occur—for example, managing to maximize certain ecosystem services upon which people depend (such as food production on farm or rangelands) versus maintaining healthy populations of vulnerable species (such as wolves, lions, or elephants). In the future, the choices will be starker, likely involving decisions such as which species are candidates for managed relocation and to which areas, and whether certain areas should be off limits for intensive management, even if it means losing some species that now live there. Developing the capacity to make those choices will require conservation in both historical and novel ecosystems and effective collaboration of scientists, governmental officials, nongovernmental organizations, the legal community, and other stakeholders. OUTLOOK Conservation efforts are currently in a state of transition, with active debate about the relative importance of preserving historical landscapes with minimal human impact on one end of the ideological spectrum versus manipulating novel ecosystems that result from human activities on the other. Although the two approaches are often presented as dichotomous, in fact they are connected by a continuum of practices, and both are needed. In most landscapes, maximizing conservation success will require more integration of paleobiology and conservation biology because in a rapidly changing world, a long-term perspective (encompassing at least millennia) is necessary to specify and select appropriate conservation targets and plans. Although adding this long-term perspective will be essential to sustain biodiversity and all of the facets of nature that humans need as we continue to rapidly change the world over the next few decades, maximizing the chances of success will also require dealing with the root causes of the conservation crisis: rapid growth of the human population, increasing per capita consumption especially in developed countries, and anthropogenic climate change that is rapidly pushing habitats outside the bounds experienced by today’s species.

239 citations

Journal ArticleDOI
TL;DR: It is shown that MHC II is missing in the entire Gadiformes lineage and thus was lost once in their common ancestor, and an association between high MHC I copy number and elevated speciation rates using trait-dependent diversification models is identified.
Abstract: Teleost fishes constitute the most species-rich vertebrate clade and exhibit extensive genetic and phenotypic variation, including diverse immune defense strategies. The genomic basis of a particularly aberrant strategy is exemplified by Atlantic cod, in which a loss of major histocompatibility complex (MHC) II functionality coincides with a marked expansion of MHC I genes. Through low-coverage genome sequencing (9-39×), assembly and comparative analyses for 66 teleost species, we show here that MHC II is missing in the entire Gadiformes lineage and thus was lost once in their common ancestor. In contrast, we find that MHC I gene expansions have occurred multiple times, both inside and outside this clade. Moreover, we identify an association between high MHC I copy number and elevated speciation rates using trait-dependent diversification models. Our results extend current understanding of the plasticity of the adaptive immune system and suggest an important role for immune-related genes in animal diversification.

189 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Abstract: Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change Tropical coral reefs and amphibians have been most negatively affected Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level

7,657 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: DNA evidence indicates temperate species in Europe had different patterns of postglacial colonization across the same area and different ones in previous oscillations, whereas the northwest region of North America was colonized from the north, east and south.
Abstract: An appreciation of the scale and frequency of climatic oscillations in the past few million years is modifying our views on how evolution proceeds. Such major events caused extinction and repeated changes in the ranges of those taxa that survived. Their spatial effects depend on latitude and topography, with extensive extinction and recolonization in higher latitudes and altitudinal shifts and complex refugia nearer the tropics. The associated population dynamics varied with life history and geography, and the present genetic constitution of the populations and species carry attenuated signals of these past dynamics. Phylogeographic studies with DNA have burgeoned recently and studies are reviewed from the arctic, temperate and tropical regions, seeking commonalities of cause in the resulting genetic patterns. Arctic species show distinct shallow genetic clades with common geographical boundaries. Thus Beringia is distinct phylogeographically, but its role as a refugial source is complex. Arctic taxa do not show the common genetic pattern of southern richness and northern purity in north-temperate species. Temperate refugial regions in Europe and North America show relatively deep DNA divergence for many taxa, indicating their presence over several Ice Ages, and suggesting a mode of speciation by repeated allopatry. DNA evidence indicates temperate species in Europe had different patterns of postglacial colonization across the same area and different ones in previous oscillations, whereas the northwest region of North America was colonized from the north, east and south. Tropical montane regions contain deeply diverged lineages, often in a relatively small geographical area, suggesting their survival there from the Pliocene. Our poor understanding of refugial biodiversity would benefit from further combined fossil and genetic studies.

3,048 citations

Book ChapterDOI
01 Jan 1998
TL;DR: In this paper, the authors explore questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties, using diffusion processes as a model of a Markov process with continuous sample paths.
Abstract: We explore in this chapter questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties. This endeavor is really a study of diffusion processes. Loosely speaking, the term diffusion is attributed to a Markov process which has continuous sample paths and can be characterized in terms of its infinitesimal generator.

2,446 citations