scispace - formally typeset
Search or ask a question
Author

Nils J. Nilsson

Bio: Nils J. Nilsson is an academic researcher from Stanford University. The author has contributed to research in topics: Inference & First-order logic. The author has an hindex of 37, co-authored 90 publications receiving 28751 citations. Previous affiliations of Nils J. Nilsson include SRI International & Artificial Intelligence Center.


Papers
More filters
Book ChapterDOI
01 Jan 1998

2 citations

Book ChapterDOI
01 Oct 2009

1 citations

Book ChapterDOI
01 Jan 1998

1 citations

Book ChapterDOI
01 Jan 1987
TL;DR: This chapter discusses the metaknowledge and metareasoning, which allows for the conceptualization of the inference process to create agents capable of reasoning in detail about the inferential abilities, and beliefs of other agents.
Abstract: This chapter discusses the metaknowledge and metareasoning. The existence of a formal description for the process of inference is important because it allows refining characterization of belief. It is inappropriate to assume that an intelligent agent believes the logical closure of the sentences in its database. It is more appropriate to define an agents beliefs as those sentences that it can derive in a given amount of time using a given inference procedure. The conceptualization of the inference process allows defining this notion of belief formally, and as a result, one can create agents capable of reasoning in detail about the inferential abilities, and beliefs of other agents. Another important use of conceptualization and vocabulary is in introspection. An intelligent agent should be able to observe, and describe its own problem-solving processes, and it should be able to understand problem solving hints provided by others.

1 citations

Book ChapterDOI
01 Jan 1987
TL;DR: In this paper, the authors describe the different aspects of knowledge and belief, and present two alternative conceptualizations, the sentential conceptualization and the possible world's conceptualization, where each agent associates with each agent a set of formulas called the agents base beliefs.
Abstract: This chapter describes the different aspects of knowledge and belief. People find it useful to attribute beliefs to others, and beliefs help to make predictions about what other people will do. It is not too relevant whether beliefs have any kind of real existence somewhere in minds. One observes merely that reasoning processes seem to make use of these abstractions. To represent ideas about the beliefs of agents, one must first describe what one think these beliefs are. This conceptualization will then form the foundation for the semantics of logical sentences about knowledge, and belief. One will describe two alternative conceptualizations. In the sentential conceptualization, one associate with each agent a set of formulas called the agents base beliefs. In the possible world's conceptualization, one associate with each agent sets of possible worlds. The chapter also presents the full semantic account for each of these conceptualizations.

1 citations


Cited by
More filters
Book
01 Jan 1988
TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Abstract: From the Publisher: Probabilistic Reasoning in Intelligent Systems is a complete andaccessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty—and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition—in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

15,671 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Book
John R. Koza1
01 Jan 1992
TL;DR: This book discusses the evolution of architecture, primitive functions, terminals, sufficiency, and closure, and the role of representation and the lens effect in genetic programming.
Abstract: Background on genetic algorithms, LISP, and genetic programming hierarchical problem-solving introduction to automatically-defined functions - the two-boxes problem problems that straddle the breakeven point for computational effort Boolean parity functions determining the architecture of the program the lawnmower problem the bumblebee problem the increasing benefits of ADFs as problems are scaled up finding an impulse response function artificial ant on the San Mateo trail obstacle-avoiding robot the minesweeper problem automatic discovery of detectors for letter recognition flushes and four-of-a-kinds in a pinochle deck introduction to biochemistry and molecular biology prediction of transmembrane domains in proteins prediction of omega loops in proteins lookahead version of the transmembrane problem evolutionary selection of the architecture of the program evolution of primitives and sufficiency evolutionary selection of terminals evolution of closure simultaneous evolution of architecture, primitive functions, terminals, sufficiency, and closure the role of representation and the lens effect Appendices: list of special symbols list of special functions list of type fonts default parameters computer implementation annotated bibliography of genetic programming electronic mailing list and public repository

13,487 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: This paper describes a mechanism for defining ontologies that are portable over representation systems, basing Ontolingua itself on an ontology of domain-independent, representational idioms.

12,962 citations