scispace - formally typeset
Search or ask a question
Author

Nils M. Kriege

Bio: Nils M. Kriege is an academic researcher from Technical University of Dortmund. The author has contributed to research in topics: Time complexity & Matching (graph theory). The author has an hindex of 15, co-authored 68 publications receiving 1072 citations. Previous affiliations of Nils M. Kriege include University of Vienna & University of Bonn.


Papers
More filters
Posted Content
TL;DR: The TUDataset for graph classification and regression is introduced, which consists of over 120 datasets of varying sizes from a wide range of applications and provides Python-based data loaders, kernel and graph neural network baseline implementations, and evaluation tools.
Abstract: Recently, there has been an increasing interest in (supervised) learning with graph data, especially using graph neural networks. However, the development of meaningful benchmark datasets and standardized evaluation procedures is lagging, consequently hindering advancements in this area. To address this, we introduce the TUDataset for graph classification and regression. The collection consists of over 120 datasets of varying sizes from a wide range of applications. We provide Python-based data loaders, kernel and graph neural network baseline implementations, and evaluation tools. Here, we give an overview of the datasets, standardized evaluation procedures, and provide baseline experiments. All datasets are available at this http URL. The experiments are fully reproducible from the code available at this http URL.

346 citations

Journal ArticleDOI
TL;DR: Graph kernels have become an established and widely used technique for solving classification tasks on graphs as mentioned in this paper, and a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years is given in this survey.
Abstract: Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner's guide to kernel-based graph classification.

170 citations

Proceedings Article
26 Jun 2012
TL;DR: In this paper, the authors proposed graph kernels based on subgraph matchings, i.e. structure-preserving bijections between subgraphs, for attributed graphs.
Abstract: We propose graph kernels based on subgraph matchings, i.e. structure-preserving bijections between subgraphs. While recently proposed kernels based on common subgraphs (Wale et al., 2008; Shervashidze et al., 2009) in general can not be applied to attributed graphs, our approach allows to rate mappings of subgraphs by a exible scoring scheme comparing vertex and edge attributes by kernels. We show that subgraph matching kernels generalize several known kernels. To compute the kernel we propose a graph-theoretical algorithm inspired by a classical relation between common subgraphs of two graphs and cliques in their product graph observed by Levi (1973). Encouraging experimental results on a classification task of real-world graphs are presented.

136 citations

Journal ArticleDOI
TL;DR: This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years and describes and categorizes graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice.
Abstract: Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner’s guide to kernel-based graph classification.

125 citations

Proceedings Article
30 Apr 2020
TL;DR: This work presents a two-stage neural architecture for learning and refining structural correspondences between graphs that scales well to large, real-world inputs while still being able to recover global correspondences consistently.
Abstract: This work presents a two-stage neural architecture for learning and refining structural correspondences between graphs. First, we use localized node embeddings computed by a graph neural network to obtain an initial ranking of soft correspondences between nodes. Secondly, we employ synchronous message passing networks to iteratively re-rank the soft correspondences to reach a matching consensus in local neighborhoods between graphs. We show, theoretically and empirically, that our message passing scheme computes a well-founded measure of consensus for corresponding neighborhoods, which is then used to guide the iterative re-ranking process. Our purely local and sparsity-aware architecture scales well to large, real-world inputs while still being able to recover global correspondences consistently. We demonstrate the practical effectiveness of our method on real-world tasks from the fields of computer vision and entity alignment between knowledge graphs, on which we improve upon the current state-of-the-art.

121 citations


Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: This article provides a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields and proposes a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNS, convolutional GNN’s, graph autoencoders, and spatial–temporal Gnns.
Abstract: Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications, where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on the existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this article, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial–temporal GNNs. We further discuss the applications of GNNs across various domains and summarize the open-source codes, benchmark data sets, and model evaluation of GNNs. Finally, we propose potential research directions in this rapidly growing field.

4,584 citations

Proceedings Article
29 Apr 2018
TL;DR: This paper designs a localized graph convolution model and shows its connection with two graph kernels, and designs a novel SortPooling layer which sorts graph vertices in a consistent order so that traditional neural networks can be trained on the graphs.
Abstract: Neural networks are typically designed to deal with data in tensor forms. In this paper, we propose a novel neural network architecture accepting graphs of arbitrary structure. Given a dataset containing graphs in the form of (G,y) where G is a graph and y is its class, we aim to develop neural networks that read the graphs directly and learn a classification function. There are two main challenges: 1) how to extract useful features characterizing the rich information encoded in a graph for classification purpose, and 2) how to sequentially read a graph in a meaningful and consistent order. To address the first challenge, we design a localized graph convolution model and show its connection with two graph kernels. To address the second challenge, we design a novel SortPooling layer which sorts graph vertices in a consistent order so that traditional neural networks can be trained on the graphs. Experiments on benchmark graph classification datasets demonstrate that the proposed architecture achieves highly competitive performance with state-of-the-art graph kernels and other graph neural network methods. Moreover, the architecture allows end-to-end gradient-based training with original graphs, without the need to first transform graphs into vectors.

1,198 citations

Proceedings Article
03 Dec 2018
TL;DR: A novel $\gamma$-decaying heuristic theory is developed that unifies a wide range of heuristics in a single framework, and proves that all these heuristic can be well approximated from local subgraphs.
Abstract: Link prediction is a key problem for network-structured data. Link prediction heuristics use some score functions, such as common neighbors and Katz index, to measure the likelihood of links. They have obtained wide practical uses due to their simplicity, interpretability, and for some of them, scalability. However, every heuristic has a strong assumption on when two nodes are likely to link, which limits their effectiveness on networks where these assumptions fail. In this regard, a more reasonable way should be learning a suitable heuristic from a given network instead of using predefined ones. By extracting a local subgraph around each target link, we aim to learn a function mapping the subgraph patterns to link existence, thus automatically learning a "heuristic" that suits the current network. In this paper, we study this heuristic learning paradigm for link prediction. First, we develop a novel γ-decaying heuristic theory. The theory unifies a wide range of heuristics in a single framework, and proves that all these heuristics can be well approximated from local subgraphs. Our results show that local subgraphs reserve rich information related to link existence. Second, based on the γ-decaying theory, we propose a new method to learn heuristics from local subgraphs using a graph neural network (GNN). Its experimental results show unprecedented performance, working consistently well on a wide range of problems.

980 citations