scispace - formally typeset
Search or ask a question

Showing papers by "Nils Weimann published in 1999"


Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of spontaneous and piezoelectric polarization on the carrier confinement at GaN/AlGaN and AlGaN/GaN interfaces.
Abstract: Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face AlxGa1−xN/GaN/AlxGa1−xN and N-face GaN/AlxGa1−xN/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15

2,581 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present theoretical and experimental results demonstrating how polarization induced electric fields and bound interface charges in group-III nitrides can lead to the formation of two-dimensional carrier gases suitable for the fabrication of high power microwave frequency transistors.
Abstract: The wurzite group-III nitrides InN, GaN, and AlN are tetrahedrally coordinated direct band gap semiconductors having a hexagonal Bravais lattice with four atoms per unit cell. As a consequence of the noncentrosymmetry of the wurzite structure and the large ionicity factor of the covalent metal–nitrogen bond, a large spontaneous polarization oriented along the hexagonal c-axis is predicted. In addition, group-III nitrides are highly piezoelectric. The strain induced piezoelectric as well as the spontaneous polarizations are expected to be present and to govern the optical and electrical properties of GaN based heterostructures to a certain extent, due to the huge polarization constants which are one of the most fascinating aspects of the nitrides. In this paper we will present theoretical and experimental results demonstrating how polarization induced electric fields and bound interface charges in AlGaN/GaN, InGaN/GaN and AlInN/GaN heterostructures lead to the formation of two-dimensional carrier gases suitable for the fabrication of high power microwave frequency transistors.

148 citations


Journal ArticleDOI
TL;DR: In this paper, a single temperature process using AlGaN nucleation layers has been developed that produces device-quality, GaN-based materials with bilayer step surfaces, where the GaN layer is deposited by flow modulation organometallic vapor phase epitaxy at temperatures in excess of 1000°C.
Abstract: A single temperature process using AlGaN nucleation layers has been developed that produces device-quality, GaN-based materials with bilayer step surfaces. The AlGaN nucleation layer is deposited by flow modulation organometallic vapor phase epitaxy at temperatures in excess of 1000 °C, where GaN and AlGaN films can be subsequently grown. We have optimized this process on both sapphire and SiC substrates, where the conditions for nucleation are found to be quite different. For growth on SiC, aluminum mole fractions ranging from 6% to 35% result in featureless surfaces. Optimizing the alloy composition and thickness of the nucleation layer on SiC allows the deposition of GaN buffer layers exceeding 5 μm without the formation of cracks. A minimum of 15% aluminum in the nucleation layer is required for smooth growth on sapphire substrates. High room temperature two-dimensional electron gas mobilities of 1575 and 1505 cm2/Vs with sheet charge densities of 1.0×1013 and 1.4×1013 cm−2 are observed in undoped AlG...

95 citations