scispace - formally typeset
Search or ask a question
Author

Nils Weimann

Other affiliations: Alcatel-Lucent, Agere Systems, Nokia  ...read more
Bio: Nils Weimann is an academic researcher from University of Duisburg-Essen. The author has contributed to research in topics: Heterojunction bipolar transistor & Bipolar junction transistor. The author has an hindex of 27, co-authored 160 publications receiving 7215 citations. Previous affiliations of Nils Weimann include Alcatel-Lucent & Agere Systems.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of spontaneous and piezoelectric polarization on the carrier confinement at GaN/AlGaN and AlGaN/GaN interfaces.
Abstract: Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face AlxGa1−xN/GaN/AlxGa1−xN and N-face GaN/AlxGa1−xN/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15

2,581 citations

Journal ArticleDOI
TL;DR: In this paper, a combination of high resolution x-ray diffraction, atomic force microscopy, Hall effect, and capacitance-voltage profiling measurements is used to calculate the polarization induced sheet charge bound at the AlGaN/GaN interfaces.
Abstract: Two dimensional electron gases in Al x Ga 12x N/GaN based heterostructures, suitable for high electron mobility transistors, are induced by strong polarization effects. The sheet carrier concentration and the confinement of the two dimensional electron gases located close to the AlGaN/GaN interface are sensitive to a large number of different physical properties such as polarity, alloy composition, strain, thickness, and doping of the AlGaN barrier. We have investigated these physical properties for undoped and silicon doped transistor structures by a combination of high resolution x-ray diffraction, atomic force microscopy, Hall effect, and capacitance‐voltage profiling measurements. The polarization induced sheet charge bound at the AlGaN/GaN interfaces was calculated from different sets of piezoelectric constants available in the literature. The sheet carrier concentration induced by polarization charges was determined

1,439 citations

Journal ArticleDOI
TL;DR: In this paper, a model to explain the observed low transverse mobility in GaN by scattering of electrons at charged dislocation lines is proposed and the statistics of trap occupancy at different doping levels are investigated.
Abstract: A model to explain the observed low transverse mobility in GaN by scattering of electrons at charged dislocation lines is proposed. Filled traps along threading dislocation lines act as Coulomb scattering centers. The statistics of trap occupancy at different doping levels are investigated. The theoretical transverse mobility from Coulomb scattering at charged traps is compared to experimental data. Due to the repulsive potential around the charged dislocation lines, electron transport parallel to the dislocations is unaffected by the scattering at charged dislocation lines.

583 citations

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional electron gas (2DEG) is induced using the strong spontaneous and piezoelectric polarization inherent in the AlGaN/GaN structures, and three-dimensional nonlinear thermal simulations are made to determine the temperature rise from heat dissipation in various geometries.
Abstract: Undoped AlGaN/GaN structures are used to fabricate high electron mobility transistors (HEMTs). Using the strong spontaneous and piezoelectric polarization inherent in this crystal structure a two-dimensional electron gas (2DEG) is induced. Three-dimensional (3-D) nonlinear thermal simulations are made to determine the temperature rise from heat dissipation in various geometries. Epitaxial growth by MBE and OMVPE are described, reaching electron mobilities of 1500 and 1700 cm/sup 2//Ns, respectively, For electron sheet density near 1/spl times/10/sup 13//cm/sup 2/, Device fabrication is described, including surface passivation used to sharply reduce the problematic current slump (dc to rf dispersion) in these HEMTs. The frequency response, reaching an intrinsic f/sub t/ of 106 GHz for 0.15 /spl mu/m gates, and drain-source breakdown voltage dependence on gate length are presented. Small periphery devices on sapphire substrates have normalized microwave output power of /spl sim/4 W/mm, while large periphery devices have /spl sim/2 W/mm, both thermally limited. Performance, without and with Si/sub 3/N/sub 4/ passivation are presented. On SiC substrates, large periphery devices have electrical limits of 4 W/mm, due in part to the limited development of the substrates.

408 citations

Journal ArticleDOI
TL;DR: In this paper, the lateral transport in GaN films produced by electron cyclotron resonance plasma-assisted molecular beam epitaxy doped n type with Si to the levels of 1015-1020 cm−3 was investigated.
Abstract: The lateral transport in GaN films produced by electron cyclotron resonance plasma-assisted molecular beam epitaxy doped n type with Si to the levels of 1015–1020 cm−3 was investigated. The room temperature electron mobility versus carrier concentration was found to follow a family of bell-shaped curves consistent with a recently proposed model of scattering by charged dislocations. The mechanism of this scattering was investigated by studying the temperature dependence of the carrier concentration and electron mobility. It was found that in the low carrier concentration region (<1017 cm−3), the electron mobility is thermally activated with an activation energy half of that of carrier concentration. This is in agreement with the prediction of the dislocation model.

393 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of spontaneous and piezoelectric polarization on the carrier confinement at GaN/AlGaN and AlGaN/GaN interfaces.
Abstract: Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face AlxGa1−xN/GaN/AlxGa1−xN and N-face GaN/AlxGa1−xN/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15

2,581 citations

Journal ArticleDOI
07 Nov 2002
TL;DR: This paper attempts to present the status of the technology and the market with a view of highlighting both the progress and the remaining problems of the AlGaN/GaN high-electron mobility transistor.
Abstract: Wide bandgap semiconductors are extremely attractive for the gamut of power electronics applications from power conditioning to microwave transmitters for communications and radar. Of the various materials and device technologies, the AlGaN/GaN high-electron mobility transistor seems the most promising. This paper attempts to present the status of the technology and the market with a view of highlighting both the progress and the remaining problems.

1,849 citations

Journal ArticleDOI
TL;DR: This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskiteOxides, metal nitrides, silicides, germanides, and 2D materials such as graphene.
Abstract: Materials research plays a vital role in transforming breakthrough scientific ideas into next-generation technology. Similar to the way silicon revolutionized the microelectronics industry, the proper materials can greatly impact the field of plasmonics and metamaterials. Currently, research in plasmonics and metamaterials lacks good material building blocks in order to realize useful devices. Such devices suffer from many drawbacks arising from the undesirable properties of their material building blocks, especially metals. There are many materials, other than conventional metallic components such as gold and silver, that exhibit metallic properties and provide advantages in device performance, design flexibility, fabrication, integration, and tunability. This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskite oxides, metal nitrides, silicides, germanides, and 2D materials such as graphene. This review provides a summary of the recent developments in the search for better plasmonic materials and an outlook of further research directions.

1,836 citations

Journal ArticleDOI
TL;DR: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed in this article, along with the influence of process-induced or grown-in defects and impurities on the device physics.
Abstract: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation, and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes, and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

1,693 citations