scispace - formally typeset
Search or ask a question
Author

Nils Weimann

Other affiliations: Alcatel-Lucent, Agere Systems, Nokia  ...read more
Bio: Nils Weimann is an academic researcher from University of Duisburg-Essen. The author has contributed to research in topics: Heterojunction bipolar transistor & Bipolar junction transistor. The author has an hindex of 27, co-authored 160 publications receiving 7215 citations. Previous affiliations of Nils Weimann include Alcatel-Lucent & Agere Systems.


Papers
More filters
Proceedings Article
10 Jan 2021
TL;DR: In this paper, a transceiver switch, a medium power amplifier (MPA) and a low noise amplifier (LNA) are integrated in 0.8 µm InP-DHBT technology.
Abstract: This paper presents a W-band transceiver chip using InP-DHBT technology for future 5G application. It consists of a transceiver switch, a medium power amplifier (MPA) and a low noise amplifier (LNA) in 0.8 µm InP-DHBT technology. The switch operates from 75 GHz to 110 GHz and simulation results show more than 20 dB isolation and 1 dB output power (P 1dBout ) of 15 dBm. The measured MPA exhibits 16 dBm saturated output power (P sat ) with 18 % power added efficiency (PAE) at 90 GHz. The measured LNA small signal gain is higher than 30 dB from 75 to 110 GHz and the measured noise figure values are below 9 dB. After integrating individual components (switch, LNA and PA), the entire transceiver chip achieves a measured isolation of more than 15 dB. The entire circuit consumes total 280 mW DC power. The chip area is only 2.5x1.5 mm2, To the knowledge of the authors, this is the first monolithically integrated transceiver covering the W-band for future 5G communication reported so far.

1 citations

Proceedings ArticleDOI
19 May 2019
TL;DR: In this paper, the authors report a method for analyzing and evaluating quantum transport parameters on the basis of their theoretical approach and experimental data in triple-barrier resonant tunneling diodes.
Abstract: We report a method for analyzing and evaluating quantum transport parameters on the basis of our theoretical approach and experimental data in triple-barrier resonant tunneling diodes. Effective tunneling time and phase relaxation time are extracted from measured S-parameters with determination of parasitic components.

1 citations

Journal ArticleDOI
TL;DR: In this article, the average turn-on field was 1.6 V/μm with a corresponding normalized field enhancement factor of about 1500, and the pyramids were formed only in the N-polar regions and have extremely sharp tips with diameters estimated to be less than 20 nm.
Abstract: Electron field emission was measured from GaN nanotip pyramids formed by polarity-selective chemical etching in KOH solution. The GaN samples were grown by plasma-assisted molecular beam epitaxy and consisted of regions of Ga- and N-polar GaN grown at the same time. The pyramids were formed only in the N-polar regions and have extremely sharp tips with diameters estimated to be less than 20 nm. Field emission measurements showed a characteristic Fowler-Nordheim behavior. The average turn-on field was 1.6 V/μm with a corresponding normalized field enhancement factor of about 1500.

1 citations

Journal ArticleDOI
TL;DR: In this article, a single-stage amplifier MMIC with a double-emitter-finger DHBT unit cell with an emitter area of 2 × 0.8 × 6 μm3 was proposed.
Abstract: This paper presents for the first time high-efficiency W-band power amplifiers (PAs), the design of which follows the digital PA (DPA) design concept. Two DPAs with different output networks have been realized: a single-band version (S-DPA) for 95 GHz and a dual-band design (D-DPA) for signal frequencies fS of 68 GHz (first band) and 76 GHz (second band), respectively. The PAs are realized as monolithic microwave-integrated circuits (MMICs) in a 0.8 μm InP DHBT transferred-substrate process. They utilize a double-emitter-finger DHBT unit cell with an emitter area of 2 × 0.8 × 6 μm3 each. In contrast to the usual W-band PAs, the proposed single-stage amplifier MMICs do not apply any special reactive matching for the transistor, which leads to very compact chip sizes of 0.27 mm2 (S-DPA) and 0.39 mm2(D-DPA). The S-DPA includes one band-pass filter (BPF) at the output with 0.6 dB insertion loss (IL) and 24 dB input return loss (RL) at the signal frequency of 95 GHz. The dual-band BPF shows 0.7 dB IL in both bands with a RL of more than 21 dB each. Applying an overdriven sinusoidal input signal to emulate digital operation the DPAs achieve a maximum output power of 14.4 dBm and power-added efficiency of 31% when using the single-band configuration. Collector efficiencies of more than 80% and the flexible multi-band operation demonstrated prove the great potential of the digital PA concept for future high-speed communications.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of spontaneous and piezoelectric polarization on the carrier confinement at GaN/AlGaN and AlGaN/GaN interfaces.
Abstract: Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face AlxGa1−xN/GaN/AlxGa1−xN and N-face GaN/AlxGa1−xN/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15

2,581 citations

Journal ArticleDOI
07 Nov 2002
TL;DR: This paper attempts to present the status of the technology and the market with a view of highlighting both the progress and the remaining problems of the AlGaN/GaN high-electron mobility transistor.
Abstract: Wide bandgap semiconductors are extremely attractive for the gamut of power electronics applications from power conditioning to microwave transmitters for communications and radar. Of the various materials and device technologies, the AlGaN/GaN high-electron mobility transistor seems the most promising. This paper attempts to present the status of the technology and the market with a view of highlighting both the progress and the remaining problems.

1,849 citations

Journal ArticleDOI
TL;DR: This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskiteOxides, metal nitrides, silicides, germanides, and 2D materials such as graphene.
Abstract: Materials research plays a vital role in transforming breakthrough scientific ideas into next-generation technology. Similar to the way silicon revolutionized the microelectronics industry, the proper materials can greatly impact the field of plasmonics and metamaterials. Currently, research in plasmonics and metamaterials lacks good material building blocks in order to realize useful devices. Such devices suffer from many drawbacks arising from the undesirable properties of their material building blocks, especially metals. There are many materials, other than conventional metallic components such as gold and silver, that exhibit metallic properties and provide advantages in device performance, design flexibility, fabrication, integration, and tunability. This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskite oxides, metal nitrides, silicides, germanides, and 2D materials such as graphene. This review provides a summary of the recent developments in the search for better plasmonic materials and an outlook of further research directions.

1,836 citations

Journal ArticleDOI
TL;DR: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed in this article, along with the influence of process-induced or grown-in defects and impurities on the device physics.
Abstract: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation, and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes, and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

1,693 citations