scispace - formally typeset
Search or ask a question
Author

Nima Arkani-Hamed

Bio: Nima Arkani-Hamed is an academic researcher from Institute for Advanced Study. The author has contributed to research in topics: Supersymmetry & Higgs boson. The author has an hindex of 86, co-authored 181 publications receiving 41505 citations. Previous affiliations of Nima Arkani-Hamed include Princeton University & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors propose a new framework for solving the hierarchy problem which does not rely on either supersymmetry or technicolor, and they take as the only fundamental short distance scale in nature.

6,013 citations

Journal ArticleDOI
TL;DR: In this article, a new framework for solving the hierarchy problem has been proposed which does not rely on low energy supersymmetry or technicolor, and this framework can be embedded in string theory.

3,922 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a solution to the hierarchy problem not relying on low-energy supersymmetry or technicolor, instead, the problem is nullified by bringing quantum gravity down to the TeV scale.
Abstract: We recently proposed a solution to the hierarchy problem not relying on low-energy supersymmetry or technicolor. Instead, the problem is nullified by bringing quantum gravity down to the TeV scale. This is accomplished by the presence of $ng~2$ new dimensions of submillimeter size, with the SM fields localized on a 3-brane in the higher dimensional space. In this paper we systematically study the experimental viability of this scenario. Constraints arise both from strong quantum gravitational effects at the TeV scale, and more importantly from the production of massless higher dimensional gravitons with TeV suppressed couplings. Theories with $ng2$ are safe due mainly to the infrared softness of higher dimensional gravity. For $n=2,$ the six dimensional Planck scale must be pushed above $\ensuremath{\sim}30\mathrm{TeV}$ to avoid cooling SN 1987A and distortions of the diffuse photon background. Nevertheless, the particular implementation of our framework within type I string theory can evade all constraints, for any $ng~2,$ with string scale ${m}_{s}\ensuremath{\sim}1\mathrm{TeV}.$ We also explore novel phenomena resulting from the existence of new states propagating in the higher dimensional space. The Peccei-Quinn solution to the strong $\mathrm{CP}$ problem is revived with a weak scale axion in the bulk. Gauge fields in the bulk can mediate repulsive forces $\ensuremath{\sim}{10}^{6}--{10}^{8}$ times stronger than gravity at submillimeter distances, as well as help stabilize the proton. Higher-dimensional gravitons produced on our brane and captured on a different ``fat'' brane can provide a natural dark matter candidate.

2,172 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a light boson invoked by XDM to mediate a large inelastic scattering cross section for the DAMA annual modulation signal at low velocities at redshift, which could produce observable effects on the ionization history of the universe.
Abstract: � > 1GeV 1 . The long range allows a Sommerfeld enhancement to boost the annihilation cross section as required, without altering the weak-scale annihilation cross section during dark matter freeze-out in the early universe. If the dark matter annihilates into the new force carrier φ, its low mass can make hadronic modes kinematically inaccessible, forcing decays dominantly into leptons. If the force carrier is a non-Abelian gauge boson, the dark matter is part of a multiplet of states, and splittings between these states are naturally generated with size αm� � MeV, leading to the eXciting dark matter (XDM) scenario previously proposed to explain the positron annihilation in the galactic center observed by the INTEGRAL satellite; the light boson invoked by XDM to mediate a large inelastic scattering cross section is identified with the φ here. Somewhat smaller splittings would also be expected, providing a natural source for the parameters of the inelastic dark matter (iDM) explanation for the DAMA annual modulation signal. Since the Sommerfeld enhancement is most significant at low velocities, early dark matter halos at redshift � 10 potentially produce observable effects on the ionization history of the universe. Because of the enhanced cross section, detection of substructure is more probable than with a conventional WIMP. Moreover, the low velocity dispersion of dwarf galaxies and Milky Way subhalos can increase the substructure annihilation signal by an additional order of magnitude or more.

1,682 citations

Journal ArticleDOI
TL;DR: In this paper, an upper bound on the strength of gravity relative to gauge forces in quantum gravity was given, motivated by arguments involving holography and absence of remnants, the stability of black holes as well as the non-existence of global symmetries in string theory.
Abstract: We conjecture a general upper bound on the strength of gravity relative to gauge forces in quantum gravity. This implies, in particular, that in a four-dimensional theory with gravity and a U(1) gauge field with gauge coupling g, there is a new ultraviolet scale Λ = gMPl, invisible to the low-energy effective field theorist, which sets a cutoff on the validity of the effective theory. Moreover, there is some light charged particle with mass smaller than or equal to Λ. The bound is motivated by arguments involving holography and absence of remnants, the (in) stability of black holes as well as the non-existence of global symmetries in string theory. A sharp form of the conjecture is that there are always light ``elementary'' electric and magnetic objects with a mass/charge ratio smaller than the corresponding ratio for macroscopic extremal black holes, allowing extremal black holes to decay. This conjecture is supported by a number of non-trivial examples in string theory. It implies the necessary presence of new physics beneath the Planck scale, not far from the GUT scale, and explains why some apparently natural models of inflation resist an embedding in string theory.

1,424 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Abstract: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

9,745 citations