scispace - formally typeset
Search or ask a question
Author

Ningyuan Qin

Bio: Ningyuan Qin is an academic researcher from Nanjing University of Science and Technology. The author has contributed to research in topics: Handover & Group signature. The author has an hindex of 2, co-authored 2 publications receiving 38 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes a novel privacy-preserving with non-frameability handover authentication protocol based on (t, n) secret sharing to fit in with all of the mobility scenarios in the LTE/LTE-A networks, which is called Nframe.
Abstract: Seamless handover between the evolved universal terrestrial radio access network and other access networks is highly desirable to mobile equipments in the long term evolution (LTE) or LTE-Advanced (LTE-A) networks, but ensuring security and efficiency of this process is challenging. In this paper, we propose a novel privacy-preserving with non-frameability handover authentication protocol based on (t, n) secret sharing to fit in with all of the mobility scenarios in the LTE/LTE-A networks, which is called Nframe. To the best of our knowledge, Nframe is the first to support protecting users’ privacy with non-frameability in the handover process. Moreover, Nframe uses pairing-free identity based cryptographic method to secure handover process and to achieve high efficiency. The formal verification by the AVISPA tool shows that Nframe is secure against various malicious attacks and the simulation result indicates that it outperforms the existing schemes in terms of computation and communication cost.

38 citations

Patent
28 Oct 2015
TL;DR: In this article, a homomorphous verifiable group signature scheme supporting multiple managers is constructed based on a forward-security cancelable group signature and secret sharing, thereby having high efficiency; the integrity of outsourced data is confirmed in allusion to a cloud server, the identity of the users is traceable, and the whole tracing process is fair.
Abstract: The invention discloses a public auditing method with privacy protection for shared data of a multi-manager group, which comprises the steps of (1) system establishment; (2) user registration; (3) user cancellation; (4) data signature generation; (5) audit challenge; (6) audit certification; (7) audit verification; and (8) user tracking. According to the invention, a homomorphous verifiable group signature scheme supporting multiple managers is constructed based on a forward-security cancelable group signature and (t, s) secret sharing, thereby having high efficiency; the integrity of outsourced data is confirmed in allusion to a cloud server; and the identity privacy of group users is protected in allusion to an auditor, the identity of the users is traceable, and the whole tracing process is fair, so that the users are not maliciously framed.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of authentication and privacy-preserving schemes for 4G and 5G cellular networks can be found in this paper, where the authors provide a taxonomy and comparison of authentication schemes in terms of tables.

163 citations

Journal ArticleDOI
TL;DR: In this paper, the state of the art of privacy-preserving schemes for ad hoc social networks including mobile social networks (MSNs) and vehicular social network (VSNs) is reviewed.
Abstract: We review the state of the art of privacy-preserving schemes for ad hoc social networks including mobile social networks (MSNs) and vehicular social networks (VSNs). Specifically, we select and examine in-detail 33 privacy-preserving schemes developed for or applied in the context of ad hoc social networks. Based on novel schemes published between 2008 and 2016, we survey privacy preservation models including location privacy, identity privacy, anonymity, traceability, interest privacy, backward privacy, and content oriented privacy. Recent significant attacks of leaking privacy, countermeasures, and game theoretic approaches in VSNs and MSNs are summarized in the form of tables. In addition, an overview of recommendations for further research is provided. With this survey, readers can acquire a thorough understanding of research trends in privacy-preserving schemes for ad hoc social networks.

112 citations

Journal ArticleDOI
TL;DR: Comprehensive performance evaluation and comparisons show that RUSH outperforms other schemes in both computation and communication efficiencies, and formal security proofs indicate that RRush resists various attacks.
Abstract: The evolving fifth generation (5G) cellular networks will be a collection of heterogeneous and backward-compatible networks. With the increased heterogeneity and densification of 5G heterogeneous networks (HetNets), it is important to ensure security and efficiency of frequent handovers in 5G wireless roaming environments. However, existing handover authentication mechanisms still have challenging issues, such as anonymity, robust traceability and universality. In this paper, we address these issues by introducing RUSH, a Robust and Universal Seamless Handover authentication protocol for 5G HetNets. In RUSH, anonymous mutual authentication with key agreement is enabled for handovers by exploiting the trapdoor collision property of chameleon hash functions and the tamper-resistance of blockchains. RUSH achieves universal handover authentication for all the diverse mobility scenarios, as exemplified by the handover between 5G new radio and non-3GPP access regardless of the trustworthiness of non-3GPP access and the consistency of the core network. RUSH also achieves perfect forward secrecy, master key forward secrecy, known randomness secrecy, key escrow freeness and robust traceability. Our formal security proofs based on the BAN-logic and formal verification based on AVISPA indicate that RUSH resists various attacks. Comprehensive performance evaluation and comparisons show that RUSH outperforms other schemes in both computation and communication efficiencies.

81 citations

Posted Content
TL;DR: This survey selects and examines in-detail 33 privacy-preserving schemes developed for or applied in the context of ad hoc social networks and surveys privacy preservation models including location privacy, identity privacy, anonymity, traceability, interest privacy, backward privacy, and content oriented privacy.
Abstract: In this paper, we review the state of the art of privacy-preserving schemes for ad hoc social networks, including, mobile social networks (MSNs) and vehicular social networks (VSNs). Specifically, we select and in-detail examine thirty-three privacy preserving schemes developed for or applied in the context of ad hoc social networks. These schemes are published between 2008 and 2016. Based on this existing privacy preservation schemes, we survey privacy preservation models, including location privacy, identity privacy, anonymity, traceability, interest privacy, backward privacy, and content oriented privacy. The recent important attacks of leaking privacy, countermeasures, and game theoretic approaches in VSNs and MSNs are summarized in form of tables. In addition, an overview of recommendations for further research is also provided. With this survey, readers can have a more thorough understanding of research trends in privacy-preserving schemes for ad hoc social networks

70 citations

Journal ArticleDOI
TL;DR: This paper presents the first many-to-one attestation scheme for device swarms, which reduces the possibility of single point of failure verifier and can significantly reduce the attestation time and has a better performance in the energy consumption comparing with list-based attestation schemes.
Abstract: An Internet of Things (IoT) system generally contains thousands of heterogeneous devices which often operate in swarms—large, dynamic, and self-organizing networks. Remote attestation is an important cornerstone for the security of these IoT swarms, as it ensures the software integrity of swarm devices and protects them from attacks. However, current attestation schemes suffer from single point of failure verifier. In this paper, we propose an Efficient and Secure Distributed Remote Attestation (ESDRA) scheme for IoT swarms. We present the first many-to-one attestation scheme for device swarms, which reduces the possibility of single point of failure verifier. Moreover, we utilize distributed attestation to verify the integrity of each node and apply accusation mechanism to report the invaded nodes, which makes ESDRA much easier to feedback the certain compromised nodes and reduces the run-time of attestation. We analyze the security of ESDRA and do some simulation experiments to show its practicality and efficiency. Especially, ESDRA can significantly reduce the attestation time and has a better performance in the energy consumption comparing with list-based attestation schemes.

43 citations