scispace - formally typeset
Search or ask a question
Author

Nir Shlezinger

Other affiliations: Weizmann Institute of Science, ETH Zurich, Stanford University  ...read more
Bio: Nir Shlezinger is an academic researcher from Ben-Gurion University of the Negev. The author has contributed to research in topics: Computer science & MIMO. The author has an hindex of 23, co-authored 138 publications receiving 1410 citations. Previous affiliations of Nir Shlezinger include Weizmann Institute of Science & ETH Zurich.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes a joint transmit beamforming model for a dual-function multiple-input-multiple-output (MIMO) radar and multiuser MIMO communication transmitter that approaches the radar performance of the radar-only scheme, i.e., without spectrum sharing, under reasonable communication quality constraints.
Abstract: Future wireless communication systems are expected to explore spectral bands typically used by radar systems, in order to overcome spectrum congestion of traditional communication bands. Since in many applications radar and communication share the same platform, spectrum sharing can be facilitated by joint design as a dual-function radar-communications system. In this paper, we propose a joint transmit beamforming model for a dual-function multiple-input-multiple-output (MIMO) radar and multiuser MIMO communication transmitter. The proposed dual-function system transmits the weighted sum of independent radar waveforms and communication symbols, forming multiple beams towards the radar targets and the communication receivers, respectively. The design of the weighting coefficients is formulated as an optimization problem whose objective is the performance of the MIMO radar transmit beamforming, while guaranteeing that the signal-to-interference-plus-noise ratio (SINR) at each communication user is higher than a given threshold. Despite the non-convexity of the proposed optimization problem, we prove that it can be relaxed into a convex one, where the relaxation is tight. We then propose a reduced complexity design based on zero-forcing the inter-user interference and radar interference. Unlike previous works, which focused on the transmission of communication symbols to synthesize a radar transmit beam pattern, our method provides more degrees of freedom for MIMO radar and is thus able to obtain improved radar performance, as demonstrated in our simulation study. Furthermore, the proposed dual-function scheme approaches the radar performance of the radar-only scheme, i.e., without spectrum sharing, under reasonable communication quality constraints.

315 citations

Journal ArticleDOI
TL;DR: Dualfunction radar-communications (DFRC) designs are the focus of a large body of recent work and can lead to substantial gains in size, cost, power consumption, robustness, and performance, especially when both radar and communications operate in the same range, which is the case in vehicular applications.
Abstract: Self-driving cars constantly assess their environment to choose routes, comply with traffic regulations, and avoid hazards. To that aim, such vehicles are equipped with wireless communications transceivers as well as multiple sensors, including automotive radars. The fact that autonomous vehicles implement both radar and communications motivates designing these functionalities in a joint manner. Such dualfunction radar-communications (DFRC) designs are the focus of a large body of recent work. These approaches can lead to substantial gains in size, cost, power consumption, robustness, and performance, especially when both radar and communications operate in the same range, which is the case in vehicular applications.

208 citations

Journal ArticleDOI
TL;DR: It is shown that combining universal vector quantization methods with FL yields a decentralized training system in which the compression of the trained models induces only a minimum distortion, and how models trained with conventional federated averaging combined with UVeQFed converge to the model which minimizes the loss function.
Abstract: Traditional deep learning models are trained at a centralized server using data samples collected from users. Such data samples often include private information, which the users may not be willing to share. Federated learning (FL) is an emerging approach to train such learning models without requiring the users to share their data. FL consists of an iterative procedure, where in each iteration the users train a copy of the learning model locally. The server then collects the individual updates and aggregates them into a global model. A major challenge that arises in this method is the need of each user to repeatedly transmit its learned model over the throughput limited uplink channel. In this work, we tackle this challenge using tools from quantization theory. In particular, we identify the unique characteristics associated with conveying trained models over rate-constrained channels, and propose a suitable quantization scheme for such settings, referred to as universal vector quantization for FL (UVeQFed). We show that combining universal vector quantization methods with FL yields a decentralized training system in which the compression of the trained models induces only a minimum distortion. We then theoretically analyze the distortion, showing that it vanishes as the number of users grows. We also characterize how models trained with conventional federated averaging combined with UVeQFed converge to the model which minimizes the loss function. Our numerical results demonstrate the gains of UVeQFed over previously proposed methods in terms of both distortion induced in quantization and accuracy of the resulting aggregated model.

151 citations

Journal ArticleDOI
TL;DR: ViterbiNet, which is a data-driven symbol detector that does not require channel state information (CSI), is obtained by integrating deep neural networks (DNNs) into the Viterbi algorithm and demonstrates the conceptual benefit of designing communication systems that integrate DNNs into established algorithms.
Abstract: Symbol detection plays an important role in the implementation of digital receivers. In this work, we propose ViterbiNet, which is a data-driven symbol detector that does not require channel state information (CSI). ViterbiNet is obtained by integrating deep neural networks (DNNs) into the Viterbi algorithm. We identify the specific parts of the Viterbi algorithm that depend on the channel model, and design a DNN to implement only those computations, leaving the rest of the algorithm structure intact. We then propose a meta-learning based approach to train ViterbiNet online based on recent decisions, allowing the receiver to track dynamic channel conditions without requiring new training samples for every coherence block. Our numerical evaluations demonstrate that the performance of ViterbiNet, which is ignorant of the CSI, approaches that of the CSI-based Viterbi algorithm, and is capable of tracking time-varying channels without needing instantaneous CSI or additional training data. Moreover, unlike conventional Viterbi detection, ViterbiNet is robust to CSI uncertainty, and it can be reliably implemented in complex channel models with constrained computational burden. More broadly, our results demonstrate the conceptual benefit of designing communication systems that integrate DNNs into established algorithms.

143 citations

Journal ArticleDOI
TL;DR: A Convergent OTA FL (COTAF) algorithm is developed which enhances the common local stochastic gradient descent (SGD) FL algorithm, introducing precoding at the users and scaling at the server, which gradually mitigates the effect of noise and achieves a convergence rate similar to that achievable over error-free channels.
Abstract: We focus on over-the-air (OTA) Federated Learning (FL), which has been suggested recently to reduce the communication overhead of FL due to the repeated transmissions of the model updates by a large number of users over the wireless channel. In OTA FL, all users simultaneously transmit their updates as analog signals over a multiple access channel, and the server receives a superposition of the analog transmitted signals. However, this approach results in the channel noise directly affecting the optimization procedure, which may degrade the accuracy of the trained model. We develop a Convergent OTA FL (COTAF) algorithm which enhances the common local stochastic gradient descent (SGD) FL algorithm, introducing precoding at the users and scaling at the server, which gradually mitigates the effect of noise. We analyze the convergence of COTAF to the loss minimizing model and quantify the effect of a statistically heterogeneous setup, i.e. when the training data of each user obeys a different distribution. Our analysis reveals the ability of COTAF to achieve a convergence rate similar to that achievable over error-free channels. Our simulations demonstrate the improved convergence of COTAF over vanilla OTA local SGD for training using non-synthetic datasets. Furthermore, we numerically show that the precoding induced by COTAF notably improves the convergence rate and the accuracy of models trained via OTA FL.

138 citations


Cited by
More filters
Book
01 Jan 2009

8,216 citations

Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

Journal ArticleDOI

2,415 citations

Book
16 Dec 2017

1,681 citations