scispace - formally typeset
Search or ask a question
Author

Niranjan Kumar

Bio: Niranjan Kumar is an academic researcher from Jawaharlal Nehru University. The author has contributed to research in topics: Virtual screening & Ligand (biochemistry). The author has an hindex of 3, co-authored 3 publications receiving 68 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Rutin, a bioflavonoid and the antibiotic, doxycycline, is identified as the most potent inhibitor of SARS-CoV-2 envelope protein, which is a essential role in the assembly and formation of the infectious virion particles.

83 citations

Journal ArticleDOI
TL;DR: Essential dynamics and MM-PBSA demonstrated that NarL-ChEMBL509609 complex remains the most stable during simulation of 100 ns with the higher binding free energy which may be a suitable candidate for further experimental analysis.
Abstract: The nitrate/nitrite response regulatory protein NarL belongs to the two-component regulatory system of Mycobacterium tuberculosis (MTB), plays a crucial role in anaerobic survival of mycobacteria i...

36 citations

Journal ArticleDOI
TL;DR: Virtual screening of bioactive molecules from the ChEMBL database targeting DprE1 demonstrated that hit-molecules: C5, C6, C8 and C10 having better binding free energy and molecular affinity as compared to CT319 demonstrated that selected compounds may be explored as lead molecules in MTB therapy.
Abstract: In Mycobacterium tuberculosis (MTB), the cell wall synthesis flavoenzyme decaprenylphosphoryl-β- d -ribose 2′-epimerase (DprE1) plays a crucial role in host pathogenesis, virulence, lethality and survival under stress. The emergence of different variants of drug resistant MTB are a major threat worldwide which essentially requires more effective new drug molecules with no major side effects. Here, we used structure based virtual screening of bioactive molecules from the ChEMBL database targeting DprE1, having bioactive 78,713 molecules known for anti-tuberculosis activity. An extensive molecular docking, binding affinity and pharmacokinetics profile filtering results in the selection four compounds, C5 (ChEMBL2441313), C6 (ChEMBL2338605), C8 (ChEMBL441373) and C10 (ChEMBL1607606) which may explore as potential drug candidates. The obtained results were validated with thirteen known DprE1 inhibitors. We further estimated the free-binding energy, solvation and entropy terms underlying the binding properties of DprE1-ligand interactions with the implication of MD simulation, MM/GBSA, MM/PBSA and MM/3D-RISM. Interestingly, we find that C6 shows the highest ΔG scores (−41.28 ± 3.51, −22.36 ± 3.17, −10.33 ± 5.70 kcal mol−1) in MM/GBSA, MM/PBSA and MM/3D-RISM assay, respectively. Whereas, the lowest ΔG scores (−35.31 ± 3.44, −13.67 ± 2.65, −3.40 ± 4.06 kcal mol−1) observed for CT319, the inhibitor co-crystallized with DprE1. Collectively, the results demonstrated that hit-molecules: C5, C6, C8 and C10 having better binding free energy and molecular affinity as compared to CT319. Thus, we proposed that selected compounds may be explored as lead molecules in MTB therapy.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This analytical tool has high potentiality for market entry as the first highly sensitive electrochemical immunoassay for SARS-CoV-2 detection in untreated saliva.

291 citations

Journal ArticleDOI
TL;DR: Molecular docking studies using 10 potential naturally occurring compounds against the SARS-CoV-2 spike protein and compared their affinity with an FDA approved repurposed drug hydroxychloroquine revealed that these molecules bind with the hACE2-S complex with low binding free energy, and ADME analysis suggested that they consist of drug-likeness property, which may be further explored as anti-SARS- CoV- 2 agents.
Abstract: Spike glycoprotein, a class I fusion protein harboring the surface of SARS-CoV-2 (SARS-CoV-2S), plays a seminal role in the viral infection starting from recognition of the host cell surface receptor, attachment to the fusion of the viral envelope with the host cells. Spike glycoprotein engages host Angiotensin-converting enzyme 2 (ACE2) receptors for entry into host cells, where the receptor recognition and attachment of spike glycoprotein to the ACE2 receptors is a prerequisite step and key determinant of the host cell and tissue tropism. Binding of spike glycoprotein to the ACE2 receptor triggers a cascade of structural transitions, including transition from a metastable pre-fusion to a post-fusion form, thereby allowing membrane fusion and internalization of the virus. From ancient times people have relied on naturally occurring substances like phytochemicals to fight against diseases and infection. Among these phytochemicals, flavonoids and non-flavonoids have been the active sources of different anti-microbial agents. We performed molecular docking studies using 10 potential naturally occurring compounds (flavonoids/non-flavonoids) against the SARS-CoV-2 spike protein and compared their affinity with an FDA approved repurposed drug hydroxychloroquine (HCQ). Further, our molecular dynamics (MD) simulation and energy landscape studies with fisetin, quercetin, and kamferol revealed that these molecules bind with the hACE2-S complex with low binding free energy. The study provided an indication that these molecules might have the potential to perturb the binding of hACE2-S complex. In addition, ADME analysis also suggested that these molecules consist of drug-likeness property, which may be further explored as anti-SARS-CoV-2 agents. Communicated by Ramaswamy H. Sarma.

175 citations

Journal ArticleDOI
TL;DR: Rutin, a bioflavonoid and the antibiotic, doxycycline, is identified as the most potent inhibitor of SARS-CoV-2 envelope protein, which is a essential role in the assembly and formation of the infectious virion particles.

83 citations

Journal ArticleDOI
TL;DR: In this work, potential inhibitors of the main protease (Mpro) of SARS-Cov-2 were identified through a docking-assisted virtual screening procedure, and four currently approved drugs, all approved for human use, were screened against three conformers of Mpro.

72 citations

Journal ArticleDOI
TL;DR: In this article, the authors report a comprehensive computational approach to identify the multi-targeted drug molecules against the SARS-CoV-2 proteins, which are crucially involved in the viral-host interaction, replication of the virus inside the host, disease progression and transmission of coronavirus infection.
Abstract: The global pandemic crisis, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed the lives of millions of people across the world. Development and testing of anti-SARS-CoV-2 drugs or vaccines have not turned to be realistic within the timeframe needed to combat this pandemic. Here, we report a comprehensive computational approach to identify the multi-targeted drug molecules against the SARS-CoV-2 proteins, whichare crucially involved in the viral-host interaction, replication of the virus inside the host, disease progression and transmission of coronavirus infection. Virtual screening of 75 FDA-approved potential antiviral drugs against the target proteins, spike (S) glycoprotein, human angiotensin-converting enzyme 2 (hACE2), 3-chymotrypsin-like cysteine protease (3CLpro), cathepsin L (CTSL), nucleocapsid protein, RNA-dependent RNA polymerase (RdRp) and non-structural protein 6 (NSP6), resulted in the selection of seven drugs which preferentially bind to the target proteins. Further, the molecular interactions determined by molecular dynamics simulation revealed that among the 75 drug molecules, catechin can effectively bind to 3CLpro, CTSL, RBD of S protein, NSP6 and nucleocapsid protein. It is more conveniently involved in key molecular interactions, showing binding free energy (ΔGbind) in the range of -5.09 kcal/mol (CTSL) to -26.09 kcal/mol (NSP6). At the binding pocket, catechin is majorly stabilized by the hydrophobic interactions, displays ΔEvdW values: -7.59 to -37.39 kcal/mol. Thus, the structural insights of better binding affinity and favorable molecular interaction of catechin toward multiple target proteins signify that catechin can be potentially explored as a multi-targeted agent against COVID-19.

50 citations