scispace - formally typeset
Search or ask a question
Author

Niranjan Rajapakse

Other affiliations: Pukyong National University
Bio: Niranjan Rajapakse is an academic researcher from University of Peradeniya. The author has contributed to research in topics: Lipid peroxidation & HT1080. The author has an hindex of 22, co-authored 29 publications receiving 4108 citations. Previous affiliations of Niranjan Rajapakse include Pukyong National University.

Papers
More filters
Journal ArticleDOI
TL;DR: This review has summarized different enzymatic preparation methods of COS and some of their reported biological activities, such as antimicrobial, anticancer, antioxidant, and immunostimulant effects are depend on their physico-chemical properties.

763 citations

Journal ArticleDOI
TL;DR: Fermented marine blue mussel derived peptides were purified using ion exchange, gel filtration and high performance liquid chromatographic techniques to identify a potent radical scavenging activity and the hepta-peptide sequence, HFGBPFH was found to be highly effective forradical scavenging and was named as MRSP.

575 citations

Journal ArticleDOI
TL;DR: Present data indicate that free-radical-scavenging activities of hoki skin gelatin peptides substantially contribute to their antioxidant properties measured in different oxidative systems.
Abstract: Hoki (Johnius belengerii) skin gelatin was hydrolyzed with three commercial enzymes to identify radical-scavenging potencies of derived peptides. Peptides derived from tryptic hydrolysate exhibited the highest scavenging activities on superoxide, carbon-centered 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals assessed by ESR spectroscopy. Following consecutive chromatographic separations of tryptic hydroolysate, the peptide sequence His-Gly-Pro-Leu-Gly-Pro-Leu (797 Da) acted as a strong radical scavenger under studied conditions. Further, this peptide could act as an antioxidant against linoleic acid peroxidation and the activity was closer to the highly active synthetic antioxidant butylated hydroxytoluene (BHT). In addition, antioxidative enzyme levels in cultured human hepatoma cells were increased in the presence of this peptide and it was presumed to be the peptide involved in maintaining the redox balance in the cell environment. Present data indicate that free-radical-scavenging activities of hoki skin gelatin peptides substantially contribute to their antioxidant properties measured in different oxidative systems.

557 citations

Journal ArticleDOI
TL;DR: It is suggested that hydrophobic amino acids present in peptide sequences contributed greatly for observed antioxidants activities and radical scavenging potency of these peptides.

475 citations

Journal ArticleDOI
TL;DR: Low molecular weight peptides obtained from ultrafiltration of giant squid muscle protein exhibited their antioxidant potential to act as chain-breaking antioxidants by inhibiting radical-mediated peroxidation of linoleic acid, and their activities were closer to highly active synthetic antioxidant, butylated hydroxytoluene.
Abstract: Low molecular weight peptides obtained from ultrafiltration (UF) of giant squid (Dosidicus gigas) muscle protein were studied for their antioxidative effects in different in vitro oxidative systems. The most potent two peptides, Asn-Ala-Asp-Phe-Gly-Leu-Asn-Gly-Leu-Glu-Gly-Leu-Ala (1307 Da) and Asn-Gly-Leu-Glu-Gly-Leu-Lys (747 Da), exhibited their antioxidant potential to act as chain-breaking antioxidants by inhibiting radical-mediated peroxidation of linoleic acid, and their activities were closer to highly active synthetic antioxidant, butylated hydroxytoluene. Addition of these peptides could enhance the viability of cytotoxic embryonic lung fibroblasts significantly (P<.05) at a low concentration of 50 microg/ml, and it was presumed due to the suppression of radical-induced oxidation of membrane lipids. Electron spin trapping studies revealed that the peptides were potent scavengers of free radicals in the order of carbon-centered (IC(50) 396.04 and 304.67 microM), hydroxyl (IC(50) 497.32 and 428.54 microM) and superoxide radicals (IC(50) 669.34 and 573.83 microM). Even though the exact molecular mechanism for scavenging of free radicals was unclear, unusually high hydrophobic amino acid composition (more than 75%) of giant squid muscle peptides was presumed to be involved in the observed activities.

438 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results suggest that Ag nanoparticles can be used as effective growth inhibitors in various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.

4,319 citations

Journal ArticleDOI
TL;DR: A review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms, is presented in this paper, where the authors suggest that further research is warranted given the already widespread and rapidly growing use of silver nanoparticles.
Abstract: Here, we present a review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms. For purpose of this review, silver nanomaterials include silver nanoparticles, stabilized silver salts, silver–dendrimer, polymer and metal oxide composites, and silver-impregnated zeolite and activated carbon materials. While there is some evidence that silver nanoparticles can directly damage bacteria cell membranes, silver nanomaterials appear to exert bacteriocidal activity predominantly through release of silver ions followed (individually or in combination) by increased membrane permeability, loss of the proton motive force, inducing de-energization of the cells and efflux of phosphate, leakage of cellular content, and disruption DNA replication. Eukaryotic cells could be similarly impacted by most of these mechanisms and, indeed, a small but growing body of literature supports this concern. Most antimicrobial studies are performed in simple aquatic media or cell culture media without proper characterization of silver nanomaterial stability (aggregation, dissolution, and re-precipitation). Silver nanoparticle stability is governed by particle size, shape, and capping agents as well as solution pH, ionic strength, specific ions and ligands, and organic macromolecules—all of which influence silver nanoparticle stability and bioavailability. Although none of the studies reviewed definitively proved any immediate impacts to human health or the environment by a silver nanomaterial containing product, the entirety of the science reviewed suggests some caution and further research are warranted given the already widespread and rapidly growing use of silver nanomaterials.

2,467 citations

Journal ArticleDOI
TL;DR: The chemical structure and relevant biological properties of chitosan for regenerative medicine have been summarized as well as the methods for the preparation of controlled drug release devices and their applications.

2,312 citations

Journal ArticleDOI
TL;DR: The present work is a compilation of recent information on collagen and gelatin extraction from new sources, as well as new processing conditions and potential novel or improved applications, many of which are largely based on induced cross-linking, blending with other biopolymers or enzymatic hydrolysis.

1,496 citations

Journal ArticleDOI
01 Oct 2010-Peptides
TL;DR: Specific characteristics of antioxidative bioactive peptides, enzymatic production, methods to evaluate antioxidant capacity, bioavailability, and safety concerns of peptides are reviewed.

1,304 citations