scispace - formally typeset
Search or ask a question
Author

Niru B. Soni

Bio: Niru B. Soni is an academic researcher from Abbott Laboratories. The author has contributed to research in topics: Antibacterial agent & Receptor tyrosine kinase. The author has an hindex of 16, co-authored 25 publications receiving 1106 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The creation of a comprehensive kinome interaction network based not only on sequence comparisons but also on multiple pharmacology parameters derived from activity profiling data is demonstrated.
Abstract: Although it is increasingly being recognized that drug-target interaction networks can be powerful tools for the interrogation of systems biology and the rational design of multitargeted drugs, there is no generalized, statistically validated approach to harmonizing sequence-dependent and pharmacology-dependent networks. Here we demonstrate the creation of a comprehensive kinome interaction network based not only on sequence comparisons but also on multiple pharmacology parameters derived from activity profiling data. The framework described for statistical interpretation of these network connections also enables rigorous investigation of chemotype-specific interaction networks, which is critical for multitargeted drug design.

238 citations

Journal ArticleDOI
TL;DR: A number of compounds with potent oral activity were identified by utilizing an estradiol-induced mouse uterine edema model and an HT1080 human fibrosarcoma xenograft tumor model, and compound 17p was found to possess favorable pharmacokinetic profiles across different species and display significant tumor growth inhibition in multiple preclinical animal models.
Abstract: In our continued efforts to search for potent and novel receptor tyrosine kinase (RTK) inhibitors as potential anticancer agents, we discovered, through a structure-based design, that 3-aminoindazole could serve as an efficient hinge-binding template for kinase inhibitors. By incorporating an N,N'-diaryl urea moiety at the C4-position of 3-aminodazole, a series of RTK inhibitors were generated, which potently inhibited the tyrosine kinase activity of the vascular endothelial growth factor receptor and the platelet-derived growth factor receptor families. A number of compounds with potent oral activity were identified by utilizing an estradiol-induced mouse uterine edema model and an HT1080 human fibrosarcoma xenograft tumor model. In particular, compound 17p (ABT-869) was found to possess favorable pharmacokinetic profiles across different species and display significant tumor growth inhibition in multiple preclinical animal models.

180 citations

Journal ArticleDOI
TL;DR: It is found that the nitroso metabolite of iniparib forms adducts with many cysteine-containing proteins in tumor cells, and the primary mechanism of action for inipirib is likely not via inhibition of PARP activity.
Abstract: Purpose: PARP inhibitors are being developed as therapeutic agents for cancer. More than six compounds have entered clinical trials. The majority of these compounds are β-nicotinamide adenine dinucleotide (NAD + )-competitive inhibitors. One exception is iniparib, which has been proposed to be a noncompetitive PARP inhibitor. In this study, we compare the biologic activities of two different structural classes of NAD + -competitive compounds with iniparib and its C -nitroso metabolite. Experimental Design: Two chemical series of NAD + -competitive PARP inhibitors, iniparib and its C -nitroso metabolite, were analyzed in enzymatic and cellular assays. Viability assays were carried out in MDA-MB-436 ( BRCA 1-deficient) and DLD1 −/− ( BRCA 2-deficient) cells together with BRCA -proficient MDA-MB-231 and DLD1 +/+ cells. Capan-1 and B16F10 xenograft models were used to compare iniparib and veliparib in vivo . Mass spectrometry and the 3 H-labeling method were used to monitor the covalent modification of proteins. Results: All NAD + -competitive inhibitors show robust activity in a PARP cellular assay, strongly potentiate the activity of temozolomide, and elicit robust cell killing in BRCA -deficient tumor cells in vitro and in vivo . Cell killing was associated with an induction of DNA damage. In contrast, neither iniparib nor its C -nitroso metabolite inhibited PARP enzymatic or cellular activity, potentiated temozolomide, or showed activity in a BRCA- deficient setting. We find that the nitroso metabolite of iniparib forms adducts with many cysteine-containing proteins. Furthermore, both iniparib and its nitroso metabolite form protein adducts nonspecifically in tumor cells. Conclusions: Iniparib nonselectively modifies cysteine-containing proteins in tumor cells, and the primary mechanism of action for iniparib is likely not via inhibition of PARP activity. Clin Cancer Res; 18(2); 510–23. ©2011 AACR .

177 citations

Journal ArticleDOI
TL;DR: A-196 represents a first-in-class chemical probe of SUV4-20 to investigate the role of histone methyltransferases in genomic integrity and demonstrate the role in H4K20 methylation and DNA repair.
Abstract: Protein lysine methyltransferases (PKMTs) regulate diverse physiological processes including transcription and the maintenance of genomic integrity. Genetic studies suggest that the PKMTs SUV420H1 and SUV420H2 facilitate proficient nonhomologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation (me2 and me3, respectively) of lysine 20 on histone 4 (H4K20). Here we report the identification of A-196, a potent and selective inhibitor of SUV420H1 and SUV420H2. Biochemical and co-crystallization analyses demonstrate that A-196 is a substrate-competitive inhibitor of both SUV4-20 enzymes. In cells, A-196 induced a global decrease in H4K20me2 and H4K20me3 and a concomitant increase in H4K20me1. A-196 inhibited 53BP1 foci formation upon ionizing radiation and reduced NHEJ-mediated DNA-break repair but did not affect homology-directed repair. These results demonstrate the role of SUV4-20 enzymatic activity in H4K20 methylation and DNA repair. A-196 represents a first-in-class chemical probe of SUV4-20 to investigate the role of histone methyltransferases in genomic integrity.

87 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this Perspective, some contemporary themes exploring the role of isosteres in drug design are sampled, with an emphasis placed on tactical applications designed to solve the kinds of problems that impinge on compound optimization and the long-term success of drug candidates.
Abstract: The concept of isosterism between relatively simple chemical entities was originally contemplated by James Moir in 1909, a notion further refined by H. G. Grimm’s hydride displacement law and captured more effectively in the ideas advanced by Irving Langmuir based on experimental observations. Langmuir coined the term “isostere” and, 18 years in advance of its actual isolation and characterization, predicted that the physical properties of the then unknown ketene would resemble those of diazomethane. The emergence of bioisosteres as structurally distinct compounds recognized similarly by biological systems has its origins in a series of studies published byHans Erlenmeyer in the 1930s, who extended earlier work conducted by Karl Landsteiner. Erlenmeyer showed that antibodies were unable to discriminate between phenyl and thienyl rings or O, NH, and CH2 in the context of artificial antigens derived by reacting diazonium ions with proteins, a process that derivatized the ortho position of tyrosine, as summarized in Figure 1 The term “bioisostere” was introduced by Harris Friedman in 1950 who defined it as compounds eliciting a similar biological effect while recognizing that compounds may be isosteric but not necessarily bioisosteric. This notion anticipates that the application of bioisosterism will depend on context, relying much less on physicochemical properties as the underlying principle for biochemical mimicry. Bioisosteres are typically less than exact structural mimetics and are often more alike in biological rather than physical properties. Thus, an effective bioisostere for one biochemical application may not translate to another setting, necessitating the careful selection and tailoring of an isostere for a specific circumstance. Consequently, the design of bioisosteres frequently introduces structural changes that can be beneficial or deleterious depending on the context, with size, shape, electronic distribution, polarizability, dipole, polarity, lipophilicity, and pKa potentially playing key contributing roles in molecular recognition and mimicry. In the contemporary practice of medicinal chemistry, the development and application of bioisosteres have been adopted as a fundamental tactical approach useful to address a number of aspects associated with the design and development of drug candidates. The established utility of bioisosteres is broad in nature, extending to improving potency, enhancing selectivity, altering physical properties, reducing or redirecting metabolism, eliminating or modifying toxicophores, and acquiring novel intellectual property. In this Perspective, some contemporary themes exploring the role of isosteres in drug design are sampled, with an emphasis placed on tactical applications designed to solve the kinds of problems that impinge on compound optimization and the long-term success of drug candidates. Interesting concepts that may have been poorly effective in the context examined are captured, since the ideas may have merit in alternative circumstances. A comprehensive cataloging of bioisosteres is beyond the scope of what will be provided, although a synopsis of relevant isosteres of a particular functionality is summarized in a succinct fashion in several sections. Isosterism has also found productive application in the design and optimization of organocatalysts, and there are several examples in which functional mimicry established initially in a medicinal chemistry setting has been adopted by this community.

2,049 citations

Journal ArticleDOI
TL;DR: Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily.
Abstract: We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.

1,686 citations

Journal ArticleDOI
19 Jan 2012-Nature
TL;DR: A better understanding of the cellular response to DNA damage will not only inform the knowledge of cancer development but also help to refine the classification as well as the treatment of the disease.
Abstract: Genomic instability is one of the most pervasive characteristics of tumour cells and is probably the combined effect of DNA damage, tumour-specific DNA repair defects, and a failure to stop or stall the cell cycle before the damaged DNA is passed on to daughter cells. Although these processes drive genomic instability and ultimately the disease process, they also provide therapeutic opportunities. A better understanding of the cellular response to DNA damage will not only inform our knowledge of cancer development but also help to refine the classification as well as the treatment of the disease.

1,425 citations

Journal ArticleDOI
05 Jul 2013-Science
TL;DR: This cellular thermal shift assay (CETSA) is based on the biophysical principle of ligand-induced thermal stabilization of target proteins and validated drug binding for a set of important clinical targets and monitored processes of drug transport and activation, off-target effects and drug resistance in cancer cell lines, as well as drug distribution in tissues.
Abstract: The efficacy of therapeutics is dependent on a drug binding to its cognate target. Optimization of target engagement by drugs in cells is often challenging, because drug binding cannot be monitored inside cells. We have developed a method for evaluating drug binding to target proteins in cells and tissue samples. This cellular thermal shift assay (CETSA) is based on the biophysical principle of ligand-induced thermal stabilization of target proteins. Using this assay, we validated drug binding for a set of important clinical targets and monitored processes of drug transport and activation, off-target effects and drug resistance in cancer cell lines, as well as drug distribution in tissues. CETSA is likely to become a valuable tool for the validation and optimization of drug target engagement.

1,305 citations

Journal ArticleDOI
TL;DR: This work has shown that the activity of PARP family members, such as PARP1 and PARP2, is tied to cellular signalling pathways, and through poly(ADP-ribosyl)ation (PARylation) they ultimately promote changes in gene expression, RNA and protein abundance, and the location and activity of proteins that mediate signalling responses.
Abstract: Poly(ADP-ribose) polymerases (PARPs) are enzymes that transfer ADP-ribose groups to target proteins and thereby affect various nuclear and cytoplasmic processes. The activity of PARP family members, such as PARP1 and PARP2, is tied to cellular signalling pathways, and through poly(ADP-ribosyl)ation (PARylation) they ultimately promote changes in gene expression, RNA and protein abundance, and the location and activity of proteins that mediate signalling responses. PARPs act in a complex response network that is driven by the cellular, molecular and chemical biology of poly(ADP-ribose) (PAR). This PAR-dependent response network is crucial for a broad array of physiological and pathological responses and thus is a good target for chemical therapeutics for several diseases.

983 citations