scispace - formally typeset
Search or ask a question
Author

Niteen Jadhav

Bio: Niteen Jadhav is an academic researcher from North Dakota State University. The author has contributed to research in topics: Polypyrrole & Corrosion. The author has an hindex of 11, co-authored 20 publications receiving 459 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A review of the application of conducting polymers (CPs) for corrosion protection of metal alloys is presented in this paper, where different approaches have been developed for the use of CPs in protective coatings (dopants, composites, blends).
Abstract: Conducting polymers (CPs) such as polyaniline (PANI), polypyrrole (PPy), and polythiophene (PTh) are used for the corrosion protection of metals and metal alloys. Several groups have reported diverse views about the corrosion protection by CPs and hence various mechanisms have been suggested to explain anticorrosion properties of CPs. These include anodic protection, controlled inhibitor release as well as barrier protection mechanisms. Different approaches have been developed for the use of CPs in protective coatings (dopants, composites, blends). A judicious choice of synthesis parameters leads to an improvement in the anticorrosion properties of the coatings prepared by CPs for metals and their alloys. This article is prepared as a review of the application of CPs for corrosion protection of metal alloys.

309 citations

Journal ArticleDOI
TL;DR: In this article, two different morphologies of polypyrrole (PPy) aluminum flake composites, namely spherical PPy/Al composites and wire PPy and al flake composite composites were synthesized by chemical oxidative polymerization, and they were applied on an aluminum alloy (AA 2024-T3) substrate.

59 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of the particle size of pH sensitive microcapsules (pH-MC) containing corrosion inhibitors on corrosion protection was investigated, and it was shown that the suppression of the anodic reaction may be the reason for underfilm corrosion protection.

33 citations

Journal ArticleDOI
TL;DR: In this article, an electrochemical microscopy (SECM) scan was performed over defects on AA2024-T3 samples coated with an epoxy-based composite containing aluminum flakes covered with either tungstate- or vanadate-doped polypyrrole.

27 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The health care system must treat illness, alleviate suffering and disability, and promote health, but the whole system needs to work to improve the health of populations.
Abstract: 1. Health care is a human right. 2. The care of the individual is at the center of health care, but the whole system needs to work to improve the health of populations. 3. The health care system must treat illness, alleviate suffering and disability, and promote health. 4. Cooperation with each other, those served, and those in other sectors is essential for all who work in health care. 5. All who provide health care must work to improve it. 6. Do no harm.

801 citations

Journal ArticleDOI
Wenqian Wang1, Qiuyu Meng1, Qi Li1, Jinbao Liu1, Mo Zhou1, Zheng Jin1, Kai Zhao1 
TL;DR: Chitosan derivatives will have a large impact and show potential in biomedicine for the development of drugs in future and the applications in the antibacterial, sustained slowly release, targeting, and delivery system fields are described.
Abstract: Chitosan is a product of the deacetylation of chitin, which is widely found in nature. Chitosan is insoluble in water and most organic solvents, which seriously limits both its application scope and applicable fields. However, chitosan contains active functional groups that are liable to chemical reactions; thus, chitosan derivatives can be obtained through the chemical modification of chitosan. The modification of chitosan has been an important aspect of chitosan research, showing a better solubility, pH-sensitive targeting, an increased number of delivery systems, etc. This review summarizes the modification of chitosan by acylation, carboxylation, alkylation, and quaternization in order to improve the water solubility, pH sensitivity, and the targeting of chitosan derivatives. The applications of chitosan derivatives in the antibacterial, sustained slowly release, targeting, and delivery system fields are also described. Chitosan derivatives will have a large impact and show potential in biomedicine for the development of drugs in future.

371 citations

Journal ArticleDOI
TL;DR: In this article, a review of composites of conducting polymers with carbonaceous materials, metal oxides, transition metals and transition metal dichalcogenides is presented, which help to explain the conduction mechanism, relevant synthesis approaches, and physical properties including electrical, optical and mechanical properties.
Abstract: Conducting polymers are extensively studied due to their outstanding properties, including tunable electrical property, optical and high mechanical properties, easy synthesis and effortless fabrication and high environmental stability over conventional inorganic materials Although conducting polymers have a lot of limitations in their pristine form, hybridization with other materials overcomes these limitations The synergetic effects of conducting polymer composites give them wide applications in electrical, electronics and optoelectronic fields An in-depth analysis of composites of conducting polymers with carbonaceous materials, metal oxides, transition metals and transition metal dichalcogenides etc is used to study them effectively Here in this review we seek to describe the transport models which help to explain the conduction mechanism, relevant synthesis approaches, and physical properties, including electrical, optical and mechanical properties Recent developments in their applications in the fields of energy storage, photocatalysis, anti-corrosion coatings, biomedical applications and sensing applications are also explained Structural properties play an important role in the performance of the composites

334 citations

Journal ArticleDOI
TL;DR: Electroanalysis as chemical sensors in solution, gas phase, and chiral molecules for conducting polymers applications is focused exclusively on energy, use in environmental remediation, and adsorption of pollutants.
Abstract: Conducting polymers (CPs), thanks to their unique properties, structures made on-demand, new composite mixtures, and possibility of deposit on a surface by chemical, physical, or electrochemical methodologies, have shown in the last years a renaissance and have been widely used in important fields of chemistry and materials science. Due to the extent of the literature on CPs, this review, after a concise introduction about the interrelationship between electrochemistry and conducting polymers, is focused exclusively on the following applications: energy (energy storage devices and solar cells), use in environmental remediation (anion and cation trapping, electrocatalytic reduction/oxidation of pollutants on CP based electrodes, and adsorption of pollutants) and finally electroanalysis as chemical sensors in solution, gas phase, and chiral molecules. This review is expected to be comprehensive, authoritative, and useful to the chemical community interested in CPs and their applications.

319 citations