scispace - formally typeset
Search or ask a question
Author

Nizar Lajnef

Other affiliations: Tunisia Polytechnic School
Bio: Nizar Lajnef is an academic researcher from Michigan State University. The author has contributed to research in topics: Structural health monitoring & Energy harvesting. The author has an hindex of 23, co-authored 95 publications receiving 1705 citations. Previous affiliations of Nizar Lajnef include Tunisia Polytechnic School.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors focused on vibration in civil engineering structures as a source of ambient energy; the key question is can sufficient energy be produced from vibrations? Earthquake, wind and traffic loads are used as realistic sources of vibration.
Abstract: Wireless sensors and sensor networks are beginning to be used to monitor structures. In general, the longevity, and hence the efficacy, of these sensors are severely limited by their stored power. The ability to convert abundant ambient energy into electric power would eliminate the problem of drained electrical supply, and would allow indefinite monitoring. This paper focuses on vibration in civil engineering structures as a source of ambient energy; the key question is can sufficient energy be produced from vibrations? Earthquake, wind and traffic loads are used as realistic sources of vibration. The theoretical maximum energy levels that can be extracted from these dynamic loads are computed. The same dynamic loads are applied to a piezoelectric generator; the energy is measured experimentally and computed using a mathematical model. The collected energy levels are compared to the energy requirements of various electronic subsystems in a wireless sensor. For a 5 cm3 sensor node (the volume of a typical concrete stone), it is found that only extreme events such as earthquakes can provide sufficient energy to power wireless sensors consisting of modern electronic chips. The results show that the optimal generated electrical power increases approximately linearly with increasing sensor mass. With current technology, it would be possible to self-power a sensor node with a mass between 100 and 1000 g for a bridge under traffic load. Lowering the energy consumption of electronic components is an ongoing research effort. It is likely that, as electronics becomes more efficient in the future, it will be possible to power a wireless sensor node by harvesting vibrations from a volume generator smaller than 5 cm3.

211 citations

Journal ArticleDOI
TL;DR: A comprehensive literature review of key features and applications of the IoT paradigm to support sustainable development of smart cities is presented and an emphasis is placed on concomitance of the Internet of Things solutions with other enabling technologies such as cloud computing, robotics, micro-electromechanical systems, wireless communications, and radio-frequency identification.

205 citations

Journal ArticleDOI
TL;DR: In this paper, a self-sustained sensing system for continuous health monitoring of asphalt concrete pavements based on piezoelectric self-powered sensing technology is presented.

96 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the results of an ongoing research project conducted by the U.S. Federal Highway Administration (FHWA) on developing an intelligent approach for structural damage detection.

91 citations

Journal ArticleDOI
TL;DR: On‐going research to develop and validate a smart pavement monitoring system that mainly consists of a novel self‐powered wireless sensor based on the integration of piezoelectric transduction with floating‐gate injection capable of detecting, storing, and transmitting strain history for long‐term monitoring and a novel passive temperature gauge.
Abstract: : Currently, pavement instrumentation for condition monitoring is done on a localized and short-term basis. Existing technology does not allow for continuous long-term monitoring and network level deployment. Long-term monitoring of mechanical loading for pavement structures could reduce maintenance costs, improve longevity, and enhance safety. In this article, on-going research to develop and validate a smart pavement monitoring system is described. The system mainly consists of a novel self-powered wireless sensor based on the integration of piezoelectric transduction with floating-gate injection capable of detecting, storing, and transmitting strain history for long-term monitoring and a novel passive temperature gauge. A technique for estimating full-field strain distributions using measured data from a limited number of implemented sensors is also described. The ultimate purpose is to incorporate the traffic wander effect in the fatigue prediction algorithms. Preliminary results are shown and limitations are discussed.

82 citations


Cited by
More filters
Journal ArticleDOI
03 Sep 2008
TL;DR: The principles and state-of-art in motion-driven miniature energy harvesters are reviewed and trends, suitable applications, and possible future developments are discussed.
Abstract: Energy harvesting generators are attractive as inexhaustible replacements for batteries in low-power wireless electronic devices and have received increasing research interest in recent years. Ambient motion is one of the main sources of energy for harvesting, and a wide range of motion-powered energy harvesters have been proposed or demonstrated, particularly at the microscale. This paper reviews the principles and state-of-art in motion-driven miniature energy harvesters and discusses trends, suitable applications, and possible future developments.

1,781 citations

Journal ArticleDOI

1,604 citations

Journal ArticleDOI
18 Apr 2018-Joule
TL;DR: A comprehensive review of piezoelectric energy-harvesting techniques developed in the last decade is presented, identifying four promising applications: shoes, pacemakers, tire pressure monitoring systems, and bridge and building monitoring.

720 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight the role of nonlinearities in the transduction of energy harvesters under different types of excitations and investigate the conditions, in terms of excitation nature and potential shape, under which such non-linearities can be beneficial for energy harvesting.
Abstract: The last two decades have witnessed several advances in microfabrication technologies and electronics, leading to the development of small, low-power devices for wireless sensing, data transmission, actuation, and medical implants. Unfortunately, the actual implementation of such devices in their respective environment has been hindered by the lack of scalable energy sources that are necessary to power and maintain them. Batteries, which remain the most commonly used power sources, have not kept pace with the demands of these devices, especially in terms of energy density. In light of this challenge, the concept of vibratory energy harvesting has flourished in recent years as a possible alternative to provide a continuous power supply. While linear vibratory energy harvesters have received the majority of the literature’s attention, a significant body of the current research activity is focused on the concept of purposeful inclusion of nonlinearities for broadband transduction. When compared to their linear resonant counterparts, nonlinear energy harvesters have a wider steady-state frequency bandwidth, leading to a common belief that they can be utilized to improve performance in ambient environments. Through a review of the open literature, this paper highlights the role of nonlinearities in the transduction of energy harvesters under different types of excitations and investigates the conditions, in terms of excitation nature and potential shape, under which such nonlinearities can be beneficial for energy harvesting. [DOI: 10.1115/1.4026278]

682 citations

01 Jan 2016
TL;DR: random data analysis and measurement procedures is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: random data analysis and measurement procedures is available in our digital library an online access to it is set as public so you can get it instantly. Our book servers spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the random data analysis and measurement procedures is universally compatible with any devices to read.

592 citations