scispace - formally typeset
Search or ask a question
Author

Nobuhiko Hiraga

Other affiliations: Life Sciences Institute
Bio: Nobuhiko Hiraga is an academic researcher from Hiroshima University. The author has contributed to research in topics: Hepatitis C virus & Hepatitis B virus. The author has an hindex of 35, co-authored 97 publications receiving 3441 citations. Previous affiliations of Nobuhiko Hiraga include Life Sciences Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the cellular Niemann-Pick C1–like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention and discovered a new antiviral target and potential therapeutic agent.
Abstract: Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ∼170 million individuals infected and current interferon-based treatment having toxic side effects and marginal efficacy, more effective antivirals are crucially needed. Although HCV protease inhibitors were just approved by the US Food and Drug Administration (FDA), optimal HCV therapy, analogous to HIV therapy, will probably require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a potential multifaceted target for antiviral intervention; however, to date, FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1-like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection, as silencing or antibody-mediated blocking of NPC1L1 impairs cell culture-derived HCV (HCVcc) infection initiation. In addition, the clinically available FDA-approved NPC1L1 antagonist ezetimibe potently blocks HCV uptake in vitro via a virion cholesterol-dependent step before virion-cell membrane fusion. Moreover, ezetimibe inhibits infection by all major HCV genotypes in vitro and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor but also discovered a new antiviral target and potential therapeutic agent.

457 citations

Journal ArticleDOI
TL;DR: This mouse model of HBV infection is a useful tool for the study ofHBV virology and evaluation of anti‐HBV drugs and results indicate that HBeAg is dispensable for active viral production and transmission.

135 citations

Journal ArticleDOI
TL;DR: Different cytokine profiles induced by the IL28 polymorphism resulted in different biochemical and inflammatory conditions during chronic HCV infection and contribute to the progression of liver diseases.

132 citations

Journal ArticleDOI
TL;DR: Chlorcyclizine HCl (CCZ), an over-the-counter drug for allergy symptoms, is identified and characterized as an anti-HCV drug in vitro and in vivo, and represents a promising candidate for drug repurposing and further development as an effective and accessible agent for treatment of HCV infection.
Abstract: Hepatitis C virus (HCV) infection affects an estimated 185 million people worldwide, with chronic infection often leading to liver cirrhosis and hepatocellular carcinoma. Although HCV is curable, there is an unmet need for the development of effective and affordable treatment options. Through a cell-based high-throughput screen, we identified chlorcyclizine HCl (CCZ), an over-the-counter drug for allergy symptoms, as a potent inhibitor of HCV infection. CCZ inhibited HCV infection in human hepatoma cells and primary human hepatocytes. The mode of action of CCZ is mediated by inhibiting an early stage of HCV infection, probably targeting viral entry into host cells. The in vitro antiviral effect of CCZ was synergistic with other anti-HCV drugs, including ribavirin, interferon-α, telaprevir, boceprevir, sofosbuvir, daclatasvir, and cyclosporin A, without significant cytotoxicity, suggesting its potential in combination therapy of hepatitis C. In the mouse pharmacokinetic model, CCZ showed preferential liver distribution. In chimeric mice engrafted with primary human hepatocytes, CCZ significantly inhibited infection of HCV genotypes 1b and 2a, without evidence of emergence of drug resistance, during 4 and 6 weeks of treatment, respectively. With its established clinical safety profile as an allergy medication, affordability, and a simple chemical structure for optimization, CCZ represents a promising candidate for drug repurposing and further development as an effective and accessible agent for treatment of HCV infection.

127 citations

Journal ArticleDOI
TL;DR: B-RTO is useful for treatment of bleeding gastric varices, achieving high eradication of gastricvarices, a low rebleeding rate, and a fairly good prognosis with improved hepatic function.
Abstract: Background The purpose of our study was to evaluate the long-term outcome and complications of balloon-occluded retrograde transvenous obliteration (B-RTO) in patients with hemorrhage from gastric fundal varices.

94 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This study presents an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV–host interactome and drug targets in the human protein–protein interaction network.
Abstract: Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV–host interactome and drug targets in the human protein–protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV (79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and HCoV–host interactions in the human interactome, we prioritize 16 potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. We further identify three potential drug combinations (e.g., sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the “Complementary Exposure” pattern: the targets of the drugs both hit the HCoV–host subnetwork, but target separate neighborhoods in the human interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations targeting 2019-nCoV/SARS-CoV-2.

1,226 citations

Journal ArticleDOI
TL;DR: The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery.
Abstract: Summary: Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.

852 citations

Journal ArticleDOI
TL;DR: Long‐term monitoring showed low rates of resistance in nucleoside‐naïve patients during 5 years of ETV therapy, corresponding with potent viral suppression and a high genetic barrier to resistance, support ETV as a primary therapy that enables prolonged treatment with potentiral suppression and minimal resistance.

750 citations