scispace - formally typeset
Search or ask a question
Author

Nobuhito Taniki

Bio: Nobuhito Taniki is an academic researcher from Keio University. The author has contributed to research in topics: Medicine & Liver injury. The author has an hindex of 9, co-authored 31 publications receiving 382 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Klebsiella pneumoniae from the gut microbiota of patients with primary sclerosing cholangitis can damage the intestinal epithelial barrier, resulting in bacterial translocation and T helper 17 cell responses in the liver, indicating a role in PSC pathogenesis.
Abstract: Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease and its frequent complication with ulcerative colitis highlights the pathogenic role of epithelial barrier dysfunction. Intestinal barrier dysfunction has been implicated in the pathogenesis of PSC, yet its underlying mechanism remains unknown. Here, we identify Klebsiella pneumonia in the microbiota of patients with PSC and demonstrate that K. pneumoniae disrupts the epithelial barrier to initiate bacterial translocation and liver inflammatory responses. Gnotobiotic mice inoculated with PSC-derived microbiota exhibited T helper 17 (TH17) cell responses in the liver and increased susceptibility to hepatobiliary injuries. Bacterial culture of mesenteric lymph nodes in these mice isolated K. pneumoniae, Proteus mirabilis and Enterococcus gallinarum, which were prevalently detected in patients with PSC. A bacterial-organoid co-culture system visualized the epithelial-damaging effect of PSC-derived K. pneumoniae that was associated with bacterial translocation and susceptibility to TH17-mediated hepatobiliary injuries. We also show that antibiotic treatment ameliorated the TH17 immune response induced by PSC-derived microbiota. These results highlight the role of pathobionts in intestinal barrier dysfunction and liver inflammation, providing insights into therapeutic strategies for PSC. Klebsiella pneumoniae from the gut microbiota of patients with primary sclerosing cholangitis (PSC) can damage the intestinal epithelial barrier, resulting in bacterial translocation and T helper 17 cell responses in the liver, indicating a role in PSC pathogenesis.

232 citations

Journal ArticleDOI
24 Sep 2020-Nature
TL;DR: It is demonstrated that the novel vago-vagal liver-brain-gut reflex arc tunes the number of pTreg cells and maintains the gut homeostasis, which could help develop new therapeutic strategies to treat or prevent immunological disorders of the gut.
Abstract: Recent clinical and experimental evidence has evoked the concept of the gut–brain axis to explain mutual interactions between the central nervous system and gut microbiota that are closely associated with the bidirectional effects of inflammatory bowel disease and central nervous system disorders1–4. Despite recent advances in our understanding of neuroimmune interactions, it remains unclear how the gut and brain communicate to maintain gut immune homeostasis, including in the induction and maintenance of peripheral regulatory T cells (pTreg cells), and what environmental cues prompt the host to protect itself from development of inflammatory bowel diseases. Here we report a liver–brain–gut neural arc that ensures the proper differentiation and maintenance of pTreg cells in the gut. The hepatic vagal sensory afferent nerves are responsible for indirectly sensing the gut microenvironment and relaying the sensory inputs to the nucleus tractus solitarius of the brainstem, and ultimately to the vagal parasympathetic nerves and enteric neurons. Surgical and chemical perturbation of the vagal sensory afferents at the hepatic afferent level reduced the abundance of colonic pTreg cells; this was attributed to decreased aldehyde dehydrogenase (ALDH) expression and retinoic acid synthesis by intestinal antigen-presenting cells. Activation of muscarinic acetylcholine receptors directly induced ALDH gene expression in both human and mouse colonic antigen-presenting cells, whereas genetic ablation of these receptors abolished the stimulation of antigen-presenting cells in vitro. Disruption of left vagal sensory afferents from the liver to the brainstem in mouse models of colitis reduced the colonic pTreg cell pool, resulting in increased susceptibility to colitis. These results demonstrate that the novel vago-vagal liver–brain–gut reflex arc controls the number of pTreg cells and maintains gut homeostasis. Intervention in this autonomic feedback feedforward system could help in the development of therapeutic strategies to treat or prevent immunological disorders of the gut. A liver–brain–gut neural circuit responds to the gut microenvironment and regulates the activity of peripheral regulatory T cells in the colon by controlling intestinal antigen-presenting cells in a muscarinic signalling-dependent manner.

92 citations

Journal ArticleDOI
TL;DR: It is found that recruitment of immune-regulatory classical dendritic cells (cDCs) is crucial for liver tolerance in concanavalin A-induced acute liver injury and that beneficial gut microbes influence tolerogenic immune responses in the liver.

63 citations

Journal ArticleDOI
TL;DR: In this article, using a murine diet-induced NASH and the subsequent resolution model, the authors demonstrate direct roles of CD8+ tissue-resident memory CD8+, T (CD8+ Trm) cells in resolving liver fibrosis.
Abstract: Non-alcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease that can progress to liver fibrosis. Recent clinical advance suggests a reversibility of liver fibrosis, but the cellular and molecular mechanisms underlying NASH resolution remain unclarified. Here, using a murine diet-induced NASH and the subsequent resolution model, we demonstrate direct roles of CD8+ tissue-resident memory CD8+ T (CD8+ Trm) cells in resolving liver fibrosis. Single-cell transcriptome analysis and FACS analysis revealed CD69+CD103-CD8+ Trm cell enrichment in NASH resolution livers. The reduction of liver CD8+ Trm cells, maintained by tissue IL-15, significantly delayed fibrosis resolution, while adoptive transfer of these cells protected mice from fibrosis progression. During resolution, CD8+ Trm cells attracted hepatic stellate cells (HSCs) in a CCR5-dependent manner, and predisposed activated HSCs to FasL-Fas-mediated apoptosis. Histological assessment of patients with NASH revealed CD69+CD8+ Trm abundance in fibrotic areas, further supporting their roles in humans. These results highlight the undefined role of liver CD8+ Trm in fibrosis resolution.

56 citations

Journal ArticleDOI
15 Jun 2017-PLOS ONE
TL;DR: Higher pre-treatment NKG2D expression, higher FIB-4 score, previous HCC history and failure to achieve sustained viral response were significant factors correlating to early HCC emergence.
Abstract: Background and aims Interferon (IFN)- free direct antiviral agents (DAAs) with rapid HCV eradication might evoke immunological reconstitutions, and some early recurrences of HCC after IFN-free DAAs have been reported. This study aimed to investigate whether natural killer group 2, member D (NKG2D) predicts early emergence of HCC after IFN-free DAAs. Methods We conducted a clinical practice-based observational study of 101 patients infected with genotype 1 HCV who received IFN-free (DAAs), and stratified them into those who did or did not develop early (i.e., during the 6-month surveillance period following treatment.) recurrence or occurrence of clinically evident HCC. We also analyzed the peripheral blood mononuclear cells, both before treatment and at end of treatment (EOT), of 24 of the patients who received IFN-free DAAs, and 16 who received IFN-combined protease inhibitor. Results We found early emergence of clinically evident HCC after IFN-free DAAs in 12 (12%) patients. Higher pre-treatment NKG2D expression, higher FIB-4 score, previous HCC history and failure to achieve sustained viral response were significant factors correlating to early HCC emergence. After IFN-free DAAs, a rapid decrease of NKG2D at EOT correlated with early HCC emergence in the IFN-free DAA-treated patients, but not in patients treated with the IFN-combined regimen. The decrease of NKG2D until EOT was predictive of early HCC emergence at a cut-off of -52% (AUC = 0.92). Conclusions On-treatment decrease of NKG2D may be a useful predictor of early emerging HCC in patients treated with IFN-free DAAs.

51 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs.
Abstract: The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host’s innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.

1,328 citations

Journal ArticleDOI
TL;DR: The identification of the elements of the gut-liver axis primarily damaged in each chronic liver disease offers possibilities to intervention.

709 citations

01 Sep 2015
TL;DR: The combination of ledipasvir, sofosbuvir, and ribavirin for 12 weeks produced high rates of SVR12 in patients with advanced liver disease, including those with decompensated cirrhosis before and after liver transplantation.
Abstract: Background & Aims There are no effective and safe treatments for chronic hepatitis C virus (HCV) infection of patients who have advanced liver disease. Methods In this phase 2, open-label study, we assessed treatment with the NS5A inhibitor ledipasvir, the nucleotide polymerase inhibitor sofosbuvir, and ribavirin in patients infected with HCV genotypes 1 or 4. Cohort A enrolled patients with cirrhosis and moderate or severe hepatic impairment who had not undergone liver transplantation. Cohort B enrolled patients who had undergone liver transplantation: those without cirrhosis; those with cirrhosis and mild, moderate, or severe hepatic impairment; and those with fibrosing cholestatic hepatitis. Patients were assigned randomly (1:1) to receive 12 or 24 weeks of a fixed-dose combination tablet containing ledipasvir and sofosbuvir, once daily, plus ribavirin. The primary end point was sustained virologic response at 12 weeks after the end of treatment (SVR12). Results We enrolled 337 patients, 332 (99%) with HCV genotype 1 infection and 5 (1%) with HCV genotype 4 infection. In cohort A (nontransplant), SVR12 was achieved by 86%–89% of patients. In cohort B (transplant recipients), SVR12 was achieved by 96%–98% of patients without cirrhosis or with compensated cirrhosis, by 85%−88% of patients with moderate hepatic impairment, by 60%–75% of patients with severe hepatic impairment, and by all 6 patients with fibrosing cholestatic hepatitis. Response rates in the 12- and 24-week groups were similar. Thirteen patients (4%) discontinued the ledipasvir and sofosbuvir combination prematurely because of adverse events; 10 patients died, mainly from complications related to hepatic decompensation. Conclusion The combination of ledipasvir, sofosbuvir, and ribavirin for 12 weeks produced high rates of SVR12 in patients with advanced liver disease, including those with decompensated cirrhosis before and after liver transplantation. ClinTrials.gov: NCT01938430.

670 citations

Journal ArticleDOI
TL;DR: The authors describe how metabolic disorders, such as type 2 diabetes and nonalcoholic fatty liver disease, are driven by alterations in the composition of the intestinal microbiota and its metabolites, which translocate from the gut across a disrupted intestinal barrier and contribute to metabolic inflammation.
Abstract: Low-grade inflammation is the hallmark of metabolic disorders such as obesity, type 2 diabetes and nonalcoholic fatty liver disease. Emerging evidence indicates that these disorders are characterized by alterations in the intestinal microbiota composition and its metabolites, which translocate from the gut across a disrupted intestinal barrier to affect various metabolic organs, such as the liver and adipose tissue, thereby contributing to metabolic inflammation. Here, we discuss some of the recently identified mechanisms that showcase the role of the intestinal microbiota and barrier dysfunction in metabolic inflammation. We propose a concept by which the gut microbiota fuels metabolic inflammation and dysregulation. Here, the authors describe how metabolic disorders, such as type 2 diabetes and nonalcoholic fatty liver disease, are driven by alterations in the composition of the intestinal microbiota and its metabolites, which translocate from the gut across a disrupted intestinal barrier and contribute to metabolic inflammation.

502 citations