scispace - formally typeset
Search or ask a question
Author

Nobuo Noshita

Bio: Nobuo Noshita is an academic researcher from University of California, San Francisco. The author has contributed to research in topics: Aquaporin 4 & Water intoxication. The author has an hindex of 1, co-authored 1 publications receiving 1327 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that mice deficient in aquaporin-4 (AQP4), a glial membrane water channel, have much better survival than wild-type mice in a model of brain edema caused by acute water intoxication, and suggested that AQP4 inhibition may provide a new therapeutic option for reducingbrain edema in a wide variety of cerebral disorders.
Abstract: Cerebral edema contributes significantly to morbidity and death associated with many common neurological disorders. However, current treatment options are limited to hyperosmolar agents and surgical decompression, therapies introduced more than 70 years ago. Here we show that mice deficient in aquaporin-4 (AQP4), a glial membrane water channel, have much better survival than wild-type mice in a model of brain edema caused by acute water intoxication. Brain tissue water content and swelling of pericapillary astrocytic foot processes in AQP4-deficient mice were significantly reduced. In another model of brain edema, focal ischemic stroke produced by middle cerebral artery occlusion, AQP4-deficient mice had improved neurological outcome. Cerebral edema, as measured by percentage of hemispheric enlargement at 24 h, was decreased by 35% in AQP4-deficient mice. These results implicate a key role for AQP4 in modulating brain water transport, and suggest that AQP4 inhibition may provide a new therapeutic option for reducing brain edema in a wide variety of cerebral disorders.

1,418 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Astrocyte functions in healthy CNS, mechanisms and functions of reactive astrogliosis and glial scar formation, and ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions are reviewed.
Abstract: Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions.

4,075 citations

Journal ArticleDOI
TL;DR: It is shown that NMO-IgG binds selectively to the aquaporin-4 water channel, a component of the dystroglycan protein complex located in astrocytic foot processes at the blood-brain barrier, which may represent the first example of a novel class of autoimmune channelopathy.
Abstract: Neuromyelitis optica (NMO) is an inflammatory demyelinating disease that selectively affects optic nerves and spinal cord. It is considered a severe variant of multiple sclerosis (MS), and frequently is misdiagnosed as MS, but prognosis and optimal treatments differ. A serum immunoglobulin G autoantibody (NMO-IgG) serves as a specific marker for NMO. Here we show that NMO-IgG binds selectively to the aquaporin-4 water channel, a component of the dystroglycan protein complex located in astrocytic foot processes at the blood-brain barrier. NMO may represent the first example of a novel class of autoimmune channelopathy.

2,024 citations

Journal ArticleDOI
TL;DR: The water permeability of biological membranes has been a longstanding problem in physiology, but the proteins responsible for this remained unknown until discovery of the aquaporin 1 (AQP1) water channel protein.
Abstract: The water permeability of biological membranes has been a longstanding problem in physiology, but the proteins responsible for this remained unknown until discovery of the aquaporin 1 (AQP1) water channel protein. AQP1 is selectively permeated by water driven by osmotic gradients. The atomic structure of human AQP1 has recently been defined. Each subunit of the tetramer contains an individual aqueous pore that permits single-file passage of water molecules but interrupts the hydrogen bonding needed for passage of protons. At least 10 mammalian aquaporins have been identified, and these are selectively permeated by water (aquaporins) or water plus glycerol (aquaglyceroporins). The sites of expression coincide closely with the clinical phenotypes--ranging from congenital cataracts to nephrogenic diabetes insipidus. More than 200 members of the aquaporin family have been found in plants, microbials, invertebrates and vertebrates, and their importance to the physiology of these organisms is being uncovered.

1,033 citations

Journal ArticleDOI
TL;DR: In this paper, a review of tight junction regulation in the blood-brain barrier is presented, which includes claudins, occludin, ZO-1, zo-2, Zo-3, cingulin and 7H6.

986 citations

Journal ArticleDOI
TL;DR: Astrocytes are the most numerous cell type in the central nervous system and provide structural, trophic, and metabolic support to neurons and modulate synaptic activity, and their death or survival may affect the ultimate clinical outcome and rehabilitation.
Abstract: Astrocytes are the most numerous cell type in the central nervous system. They provide structural, trophic, and metabolic support to neurons and modulate synaptic activity. Accordingly, impairment in these astrocyte functions during brain ischemia and other insults can critically influence neuron survival. Astrocyte functions that are known to influence neuronal survival include glutamate uptake, glutamate release, free radical scavenging, water transport, and the production of cytokines and nitric oxide. Long-term recovery after brain injury, through neurite outgrowth, synaptic plasticity, or neuron regeneration, is influenced by astrocyte surface molecule expression and trophic factor release. In addition, the death or survival of astrocytes themselves may affect the ultimate clinical outcome and rehabilitation through effects on neurogenesis and synaptic reorganization.

884 citations