scispace - formally typeset
Search or ask a question
Author

Nobuo Otsuka

Bio: Nobuo Otsuka is an academic researcher from Purdue University. The author has contributed to research in topics: Molecular beam epitaxy & Superlattice. The author has an hindex of 40, co-authored 174 publications receiving 5435 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Arsenic precipitates have been observed in GaAs low-temperature buffer layers (LTBLs) used as "substrates" for normal molecular beam epitaxy growth as mentioned in this paper.
Abstract: Arsenic precipitates have been observed in GaAs low‐temperature buffer layers (LTBLs) used as ‘‘substrates’’ for normal molecular beam epitaxy growth. Transmission electron microscopy has shown the arsenic precipitates to be hexagonal phase single crystals. The precipitates are about 6±4 nm in diameter with a density on the order of 1017 precipitates per cm3. The semi‐insulating properties of the LTBL can be explained in terms of these arsenic precipitates acting as ‘‘buried’’ Schottky barriers with overlapping spherical depletion regions. The implications of these results on LTBL resistivity stability with respect to doping and anneal temperature will be discussed as will the possible role of arsenic precipitates in semi‐insulating liquid‐encapsulated Czochralski‐grown bulk GaAs.

408 citations

Journal ArticleDOI
TL;DR: In this paper, a GaAs buffer layer was grown at low substrate temperatures (250 °C) and the film structures were examined using transmission electron microscopy, showing that the GaAs layer was free of defects or clusters.
Abstract: We have grown film structures by molecular beam epitaxy which include GaAs buffer layers grown at low substrate temperatures (250 °C). The film structures have been examined using transmission electron microscopy. The layers grown at normal temperatures (600 °C) were free of defects or clusters. In contrast, the layer which was grown at low substrate temperatures contained precipitates which have been identified as hexagonal arsenic. The density of the arsenic precipitates is found to be very sensitive to the substrate temperature during growth.

244 citations

Journal ArticleDOI
TL;DR: In this paper, a low-resistance quasi-ohmic contact to p−ZnSe is described, which involves the injection of holes from heavily doped ZnTe into ZnSe via a Zn(Se,Te) pseudograded band gap region.
Abstract: We describe a low‐resistance quasi‐ohmic contact to p‐ZnSe which involves the injection of holes from heavily doped ZnTe into ZnSe via a Zn(Se,Te) pseudograded band gap region. The specific contact resistance is measured to be in the range of 2–8×10−3 Ω cm2. The graded heterostructure scheme is incorporated as an efficient injector of holes for laser diode and light emitting diode devices, demonstrating the usefulness of this new contact scheme at actual device current densities.

211 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the nucleation and propagation of threading dislocations in GaAs on Si epitaxial layers, and found several techniques which are effective in reducing their density.
Abstract: We have studied the nucleation and propagation of threading dislocations in GaAs on Si epitaxial layers, and have found several techniques which are effective in reducing their density. The use of substrates properly tilted off (100) reduces the dislocation density as the presence of steps helps create perfect edge dislocations with their Burgers vector parallel to the interface and thus do not propagate into the bulk epitaxial layer. Cross sections by transmission electron microscopy show that the incorporation of an InGaAs/GaAs strained‐layer superlattice reduces the density of threading dislocations above it by a factor of 10, clearly demonstrating the effectiveness of this technique. These methods lead to a dislocation density of 103 cm−2 near the surface of 2 μm layers which is five orders of magnitude lower than what has been obtained previously. We have also found that the density of oval defects is much lower for GaAs on Si than for GaAs on GaAs.

188 citations

Journal ArticleDOI
TL;DR: In this article, the growth of cubic (zinc blende) CdSe epilayers on GaAs substrates by molecular beam epitaxy was reported, and the lattice constant of the epilayer was 6.077 A and the energy gap was 1.75, 1.74, and 1.67 at 10, 80, and 300 K, respectively.
Abstract: We report the growth of cubic (zinc blende) CdSe epilayers on [100] GaAs substrates by molecular beam epitaxy. The lattice constant of the CdSe epilayers is 6.077 A, and the energy gap is 1.75, 1.74, and 1.67 at 10, 80, and 300 K, respectively.

172 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
Abstract: Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure (DH) blue‐light‐emitting diodes(LEDs) with the luminous intensity over 1 cd were fabricated As an active layer, a Zn‐doped InGaN layer was used for the DH LEDs The typical output power was 1500 μW and the external quantum efficiency was as high as 27% at a forward current of 20 mA at room temperature The peak wavelength and the full width at half‐maximum of the electroluminescence were 450 and 70 nm, respectively This value of luminous intensity was the highest ever reported for blue LEDs

3,497 citations

Journal ArticleDOI
TL;DR: In this paper, the physical properties of diluted magnetic semiconductors (DMS) of the type AII1−xMnxBVI (e.g., Cd1−mnxSe, Hg 1−mnsTe) were reviewed.
Abstract: We review the physical properties of diluted magnetic semiconductors (DMS) of the type AII1−xMnxBVI (e.g., Cd1−xMnxSe, Hg1−xMnxTe). Crystallographic properties are discussed first, with emphasis on the common structural features which these materials have as a result of tetrahedral bonding. We then describe the band structure of the AII1−xMnxBVI alloys in the absence of an external magnetic field, stressing the close relationship of the sp electron bands in these materials to the band structure of the nonmagnetic AIIBVI ‘‘parent’’ semiconductors. In addition, the characteristics of the narrow (nearly localized) band arising from the half‐filled Mn 3d5 shells are described, along with their profound effect on the optical properties of DMS. We then describe our present understanding of the magnetic properties of the AII1−xMnxBVI alloys. In particular, we discuss the mechanism of the Mn++‐Mn++ exchange, which underlies the magnetism of these materials; we present an analytic formulation for the magnetic susc...

2,895 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare the performance of SiC, GaN, and ZnSe for high-temperature electronics and short-wavelength optical applications and conclude that SiC is the leading contender for high temperature and high power applications if ohmic contacts and interface state densities can be further improved.
Abstract: In the past several years, research in each of the wide‐band‐gap semiconductors, SiC, GaN, and ZnSe, has led to major advances which now make them viable for device applications. The merits of each contender for high‐temperature electronics and short‐wavelength optical applications are compared. The outstanding thermal and chemical stability of SiC and GaN should enable them to operate at high temperatures and in hostile environments, and also make them attractive for high‐power operation. The present advanced stage of development of SiC substrates and metal‐oxide‐semiconductor technology makes SiC the leading contender for high‐temperature and high‐power applications if ohmic contacts and interface‐state densities can be further improved. GaN, despite fundamentally superior electronic properties and better ohmic contact resistances, must overcome the lack of an ideal substrate material and a relatively advanced SiC infrastructure in order to compete in electronics applications. Prototype transistors have been fabricated from both SiC and GaN, and the microwave characteristics and high‐temperature performance of SiC transistors have been studied. For optical emitters and detectors, ZnSe, SiC, and GaN all have demonstrated operation in the green, blue, or ultraviolet (UV) spectra. Blue SiC light‐emitting diodes (LEDs) have been on the market for several years, joined recently by UV and blue GaN‐based LEDs. These products should find wide use in full color display and other technologies. Promising prototype UV photodetectors have been fabricated from both SiC and GaN. In laser development, ZnSe leads the way with more sophisticated designs having further improved performance being rapidly demonstrated. If the low damage threshold of ZnSe continues to limit practical laser applications, GaN appears poised to become the semiconductor of choice for short‐wavelength lasers in optical memory and other applications. For further development of these materials to be realized, doping densities (especially p type) and ohmic contact technologies have to be improved. Economies of scale need to be realized through the development of larger SiC substrates. Improved substrate materials, ideally GaN itself, need to be aggressively pursued to further develop the GaN‐based material system and enable the fabrication of lasers. ZnSe material quality is already outstanding and now researchers must focus their attention on addressing the short lifetimes of ZnSe‐based lasers to determine whether the material is sufficiently durable for practical laser applications. The problems related to these three wide‐band‐gap semiconductor systems have moved away from materials science toward the device arena, where their technological development can rapidly be brought to maturity.

2,514 citations

Journal ArticleDOI
TL;DR: A large amount of work world wide has been directed towards obtaining an understanding of the fundamental characteristics of porous Si as mentioned in this paper, and the key importance of crystalline Si nanostructures in determining the behaviour of porous si is highlighted.
Abstract: A large amount of work world-wide has been directed towards obtaining an understanding of the fundamental characteristics of porous Si. Much progress has been made following the demonstration in 1990 that highly porous material could emit very efficient visible photoluminescence at room temperature. Since that time, all features of the structural, optical and electronic properties of the material have been subjected to in-depth scrutiny. It is the purpose of the present review to survey the work which has been carried out and to detail the level of understanding which has been attained. The key importance of crystalline Si nanostructures in determining the behaviour of porous Si is highlighted. The fabrication of solid-state electroluminescent devices is a prominent goal of many studies and the impressive progress in this area is described.

2,371 citations