scispace - formally typeset
Search or ask a question
Author

Nobutaka Ohgami

Other affiliations: Chubu University, Kumamoto University, Dartmouth College  ...read more
Bio: Nobutaka Ohgami is an academic researcher from Nagoya University. The author has contributed to research in topics: Hearing loss & Melanoma. The author has an hindex of 25, co-authored 87 publications receiving 3006 citations. Previous affiliations of Nobutaka Ohgami include Chubu University & Kumamoto University.


Papers
More filters
Journal ArticleDOI
TL;DR: The roles of the Niemann-Pick type C1 protein in mediating the endosomal transport of LDL-derived cholesterol and endogenously synthesized cholesterol are discussed and a close relationship between the ACAT substrate pool and the cholesterol efflux pool is proposed.
Abstract: Mammalian cells acquire cholesterol from low-density lipoprotein (LDL) and from endogenous biosynthesis. The roles of the Niemann-Pick type C1 protein in mediating the endosomal transport of LDL-derived cholesterol and endogenously synthesized cholesterol are discussed. Excess cellular cholesterol is converted to cholesteryl esters by the enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) 1 or is removed from a cell by cellular cholesterol efflux at the plasma membrane. A close relationship between the ACAT substrate pool and the cholesterol efflux pool is proposed. Sterol-sensing domains (SSDs) are present in several membrane proteins, including NPC1, HMG-CoA reductase, and the SREBP cleavage-activating protein. The functions of SSDs are described. ACAT1 is an endoplasmic reticulum cholesterol sensor and contains a signature motif characteristic of the membrane-bound acyltransferase family. The nonvesicular cholesterol translocation processes involve the START domain proteins and the oxysterol binding protein-related proteins (ORPs). The properties of these proteins are summarized.

536 citations

Journal ArticleDOI
TL;DR: The results indicate that CD36 expressed by these cells mediates the endocytic uptake and subsequent intracellular degradation of AGE proteins, which might contribute to the pathogenesis of diabetic macrovascular complications.

255 citations

Journal ArticleDOI
TL;DR: It is found that Wolffian duct cells compete, based on RET signaling levels, to contribute to this domain, and the caudal Wolffians transiently converts from a simple to a pseudostratified epithelium, a process that does not require Ret.

211 citations

Journal ArticleDOI
TL;DR: There is direct binding between NPC1 and azocholestanol; the binding does not require NPC2 but requires a functional SSD within NPC1, and cholesterol is more effective in protection against labeling than its analogs epicholesterol or 5-alpha-cholestan.
Abstract: Niemann–Pick type C (NPC) 1 protein plays important roles in moving cholesterol and other lipids out of late endosomes by means of vesicular trafficking, but it is not known whether NPC1 directly interacts with cholesterol. We performed photoaffinity labeling of intact cells expressing fluorescent protein (FP)-tagged NPC1 by using [3H]7,7-azocholestanol ([3H]AC). After immunoprecipitation, 3H-labled NPC1-GFP appeared as a single band. Including excess unlabeled sterol to the labeling reaction significantly diminished the labeling. Altering the NPC1 sterol-sensing domain (SSD) with loss-of-function mutations (P692S and Y635C) severely reduced the extent of labeling. To further demonstrate the specificity of labeling, we show that NPC2, a late endosomal/lysosomal protein that binds to cholesterol with high affinity, is labeled, whereas mutant NPC2 proteins inactive in binding cholesterol are not. Vamp7, an abundant late endosomal membrane protein without an SSD but with one transmembrane domain, cannot be labeled. Binding between [3H]AC and NPC1 does not require NPC2. Treating cells with either U-18666A, a compound that creates an NPC-like phenotype, or with bafilomycin A1, a compound that raises late endosomal pH, has no effect on labeling of NPC1-YFP, suggesting that both drugs affect processes other than NPC1 binding to cholesterol. We also developed a procedure to label the NPC1-YFP by [3H]AC in vitro and showed that cholesterol is more effective in protection against labeling than its analogs epicholesterol or 5-α-cholestan. Overall, the results demonstrate that there is direct binding between NPC1 and azocholestanol; the binding does not require NPC2 but requires a functional SSD within NPC1.

210 citations

Journal ArticleDOI
TL;DR: AGE proteins, as ligands for SR-BI, effectively inhibit bothSR-BI-mediated selective uptake of HDL-CE and cholesterol efflux from peripheral cells to HDL, suggesting that AGE proteins might modulate SR- BI-mediated cholesterol metabolism in vivo.

176 citations


Cited by
More filters
Journal ArticleDOI
29 Apr 2010-Nature
TL;DR: It is shown that cholesterol crystals activate the NLRP3 inflammasome in phagocytes in vitro in a process that involves phagolysosomal damage and that crystalline cholesterol acts as an endogenous danger signal and its deposition in arteries or elsewhere is an early cause rather than a late consequence of inflammation.
Abstract: The inflammatory nature of atherosclerosis is well established but the agent(s) that incite inflammation in the artery wall remain largely unknown. Germ-free animals are susceptible to atherosclerosis, suggesting that endogenous substances initiate the inflammation. Mature atherosclerotic lesions contain macroscopic deposits of cholesterol crystals in the necrotic core, but their appearance late in atherogenesis had been thought to disqualify them as primary inflammatory stimuli. However, using a new microscopic technique, we revealed that minute cholesterol crystals are present in early diet-induced atherosclerotic lesions and that their appearance in mice coincides with the first appearance of inflammatory cells. Other crystalline substances can induce inflammation by stimulating the caspase-1-activating NLRP3 (NALP3 or cryopyrin) inflammasome, which results in cleavage and secretion of interleukin (IL)-1 family cytokines. Here we show that cholesterol crystals activate the NLRP3 inflammasome in phagocytes in vitro in a process that involves phagolysosomal damage. Similarly, when injected intraperitoneally, cholesterol crystals induce acute inflammation, which is impaired in mice deficient in components of the NLRP3 inflammasome, cathepsin B, cathepsin L or IL-1 molecules. Moreover, when mice deficient in low-density lipoprotein receptor (LDLR) were bone-marrow transplanted with NLRP3-deficient, ASC (also known as PYCARD)-deficient or IL-1alpha/beta-deficient bone marrow and fed on a high-cholesterol diet, they had markedly decreased early atherosclerosis and inflammasome-dependent IL-18 levels. Minimally modified LDL can lead to cholesterol crystallization concomitant with NLRP3 inflammasome priming and activation in macrophages. Although there is the possibility that oxidized LDL activates the NLRP3 inflammasome in vivo, our results demonstrate that crystalline cholesterol acts as an endogenous danger signal and its deposition in arteries or elsewhere is an early cause rather than a late consequence of inflammation. These findings provide new insights into the pathogenesis of atherosclerosis and indicate new potential molecular targets for the therapy of this disease.

2,904 citations

Journal ArticleDOI
TL;DR: The chemistry of advanced glycated end-product formation and their patho-biochemistry particularly in relation to the diabetic microvascular complications of retinopathy, neuropathy and nephropathy as well as their role in the accelerated vasculopathy observed in diabetes are discussed.
Abstract: Advanced glycation end-products are a complex and heterogeneous group of compounds that have been implicated in diabetes related complications At present it is not known if they are the cause or the consequence of the complications observed We discuss the chemistry of advanced glycated end-product formation and their patho-biochemistry particularly in relation to the diabetic microvascular complications of retinopathy, neuropathy and nephropathy as well as their role in the accelerated vasculopathy observed in diabetes The concept of carbonyl stress as a cause for advanced glycated end-product toxicity is mentioned We discuss alterations in the concentrations of advanced glycated end-products in the body, particularly in relation to changes occurring with age, diabetes and its complications such as nephropathy Problems relating to current methods of advanced glycated end-product detection and measurement are highlighted including the lack of a universally established method of detection or unit of measurement Agents used for the treatment of advanced glycated end-product accumulation are reviewed, with an emphasis on the results of the recent phase III trials using aminoguanidine and diabetes related complications

2,308 citations

Journal ArticleDOI
TL;DR: Because of the emerging evidence about the adverse effects of AGEs on the vasculature of patients with diabetes, a number of different therapies to inhibit A GEs are under investigation.
Abstract: Advanced glycation end products (AGEs) are proteins or lipids that become glycated after exposure to sugars. AGEs are prevalent in the diabetic vasculature and contribute to the development of athe...

2,054 citations

Journal ArticleDOI
29 Apr 2011-Cell
TL;DR: The central roles of macrophages in each of the stages of disease pathogenesis are discussed, including atherosclerosis, stroke, and sudden cardiac death.

1,986 citations

Journal ArticleDOI
TL;DR: The maturation programme entails a dramatic transformation of these dynamic organelles disconnecting them functionally and spatially from early endosomes and preparing them for their unidirectional role as a feeder pathway to lysosomes.
Abstract: Being deeply connected to signalling, cell dynamics, growth, regulation, and defence, endocytic processes are linked to almost all aspects of cell life and disease. In this review, we focus on endosomes in the classical endocytic pathway, and on the programme of changes that lead to the formation and maturation of late endosomes/multivesicular bodies. The maturation programme entails a dramatic transformation of these dynamic organelles disconnecting them functionally and spatially from early endosomes and preparing them for their unidirectional role as a feeder pathway to lysosomes.

1,859 citations