scispace - formally typeset
Search or ask a question
Author

Nobutake Tamai

Bio: Nobutake Tamai is an academic researcher from University of Tokushima. The author has contributed to research in topics: Bilayer & Phase (matter). The author has an hindex of 15, co-authored 74 publications receiving 748 citations. Previous affiliations of Nobutake Tamai include Kyoto University & Nara Institute of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the difference in solution properties of cellulose in 8%LiCl · DMAc (dimethyl acetamide) was investigated using cells from different origins, including plants (dissolving pulp), cotton linters (CC), bacteria (Acetobacterxylinum, BC), and marine animals (tunicin fromHalocynthia).
Abstract: Differences in the solution properties of cellulose in 8%LiCl · DMAc (dimethyl acetamide) were investigated usingcelluloses from different origins. The latter included plants (dissolving pulp(DP), cotton linters (CC), and kraft pulp), bacteria (Acetobacterxylinum, BC), and marine animals (tunicin fromHalocynthia). The celluloses from plants and bacteriaformed LiCl · DMAc solutions that were isotropic andanisotropic, respectively; and the animal cellulose was insoluble. The weightaverage molecular weights, Mw, of DP, CC and BC were found to be98.2 × 104,170 × 104 and192 × 104, respectively. The solutionviscositieswere proportional to cα (c; polymer concentration) in thedilute and semi-dilute regions, where the exponent α was 1 for allsamplesin the dilute region; in the semi-dilute region, it was 4 for the DP and CCsolutions and 3 for the BC solution. Molecular weight differences werecompensated by plotting the viscosity against cMw orc[η] (where [η] is the limiting viscosity number).The difference in viscosity behavior at elevated solutionconcentration indicates that the cellulose molecules from DP and CC behave asflexible polymer chains and those of BC as rod-like ones.These results suggest that differences in molecular structure andproperties exist between celluloses from different sources, and that thesedifferences relate to the mechanism or the type of the intermolecularinteraction between the celluloses of plants (DP and CC) and those of bacteria(BC).

96 citations

Journal ArticleDOI
TL;DR: Solution properties and molecular structure of tunicate cellulose (TC), an animal cellulose from Halocynthia roretzi, were investigated in terms of rheological and dilute solution properties and the dependence for the TC solution seems unexplainable on the basis of molecular theories.

78 citations

Journal ArticleDOI
TL;DR: The bilayer phase behavior of various kinds of PCs with different molecular structures is revealed from the temperature–pressure phase diagrams, and the difference in phase stability among these PC bilayers is discussed in connection with the molecular structure of the PC molecules.
Abstract: Bilayers formed by phospholipids are frequently used as model biological membranes in various life science studies. A characteristic feature of phospholipid bilayers is to undergo a structural change called a phase transition in response to environmental changes of their surroundings. In this review, we focus our attention on phase transitions of some major phospholipids contained in biological membranes, phosphatidylcholines (PCs), depending on temperature and pressure. Bilayers of dipalmitoylphosphatidylcholine (DPPC), which is the most representative lipid in model membrane studies, will first be explained. Then, the bilayer phase behavior of various kinds of PCs with different molecular structures is revealed from the temperature-pressure phase diagrams, and the difference in phase stability among these PC bilayers is discussed in connection with the molecular structure of the PC molecules. Furthermore, the solvent effect on the phase behavior is also described briefly.

47 citations

Journal ArticleDOI
TL;DR: It was proved that the phase behavior of the ester-linked PC bilayers under high temperature and pressure is almost equivalent to that of the ether-linkedPC bilayers in the vicinity of ambient pressure.

43 citations

Journal ArticleDOI
TL;DR: The fluorescence spectra of Prodan in lipid bilayers showed the emission maxima characteristic of bilayer phases, which were dependent on the location of prodan in the bilayer, indicating that the L beta I phase in the SPPC bilayer has a less polar "pocket" formed by a space between uneven terminal methyl ends of the sn-1 and sn-2 chains, in which the Prodan molecule remains stably.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Mild enzymatic hydrolysis has been introduced and combined with mechanical shearing and a high-pressure homogenization, leading to a controlled fibrillation down to nanoscale and a network of long and highly entangled cellulose I elements.

1,819 citations

Journal ArticleDOI
TL;DR: In this paper, a new and highly efficient direct solvent, 1-allyl-3methylimidazolium chloride (AMIMCl), has been used for the dissolution and regeneration of cellulose.
Abstract: A new and highly efficient direct solvent, 1-allyl-3-methylimidazolium chloride (AMIMCl), has been used for the dissolution and regeneration of cellulose. The cellulose samples without any pretreatment were readily dissolved in AMIMCl. The regenerated cellulose materials prepared by coagulation in water exhibited a good mechanical property. Because of its thermostable and nonvolatile nature, AMIMCl was easily recycled. Therefore, a novel and nonpolluting process for the manufacture of regenerated cellulose materials using AMIMCl has been developed in this work.

1,307 citations

Journal ArticleDOI
TL;DR: This critical review will assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process.
Abstract: Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as ‘g cellulose per mole of IL’ or ‘mol IL per mol hydroxyl in cellulose’ to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate ‘greenness’ of any process (142 references).

1,090 citations

Journal ArticleDOI
TL;DR: An overview of applications of nanofibrous biopolymer mats created by the electrospinning process is discussed in this article, where an introduction to biopolymers and the electro spinning process are discussed.
Abstract: Electrospinning is a fabrication technique, which can be used to create nanofibrous non‐wovens from a variety of starting materials. The structure, chemical and mechanical stability, functionality, and other properties of the mats can be modified to match end applications. In this review, an introduction to biopolymers and the electrospinning process, as well as an overview of applications of nanofibrous biopolymer mats created by the electrospinning process will be discussed. Biopolymers will include polysaccharides (cellulose, chitin, chitosan, dextrose), proteins (collagen, gelatin, silk, etc.), DNA, as well as some biopolymer derivatives and composites.

721 citations

Journal ArticleDOI
Sen Wang1, Ang Lu1, Lina Zhang1
TL;DR: In this paper, the widely used non-derivatizing cellulose solvents are summarized, including their dissolution mechanisms, with emphasis on the neat regenerated cellulose materials and the composite materials.

710 citations