scispace - formally typeset
Search or ask a question
Author

Noel J. Buckley

Bio: Noel J. Buckley is an academic researcher from University of Oxford. The author has contributed to research in topics: Muscarinic acetylcholine receptor & Transcription factor. The author has an hindex of 51, co-authored 132 publications receiving 11998 citations. Previous affiliations of Noel J. Buckley include National Institutes of Health & King's College London.


Papers
More filters
Journal ArticleDOI
31 Jul 1987-Science
TL;DR: Analysis of human and rat genomic clones indicates that there are at least four functional muscarinic receptor genes and that these genes lack introns in the coding sequence.
Abstract: Complementary DNAs for three different muscarinic acetylcholine receptors were isolated from a rat cerebral cortex library, and the cloned receptors were expressed in mammalian cells. Analysis of human and rat genomic clones indicates that there are at least four functional muscarinic receptor genes and that these genes lack introns in the coding sequence. This gene family provides a new basis for evaluating the diversity of muscarinic mechanisms in the nervous system.

1,431 citations

Journal ArticleDOI
TL;DR: The aim of this review is to discuss the structure, function, and binding properties of the different muscarinic receptor species, attempting where possible to coordinate the diverse experimental data into a uniform picture.
Abstract: In 1914, Sir Henry Dale provided the basis for the classical and comfortable definition of muscarinic and nicotinic acetylcholine receptors: Muscarinic receptors are selectively activated by muscarine and blocked by atropine; nicotinic receptors are activated by nicotine and blocked by curare. This definition lasted over 60 years, despite isolated reports that the picture might not be so simple. We now know, as the result of molecular biological studies, that there are multiple variants of both muscarinic and nicotinic receptors . These receptors are members of two quite separate gene superfamilies and only share the property of being activated by the same ligand, acetylcholine. The aim of this review is to discuss the structure, function, and binding properties of the different muscarinic receptor species, attempting where possible to coordinate the diverse experimental data into a uniform picture. For a more comprehensive review on muscarinic receptors, readers are di­ rected to a recent book by Brown (l).

1,383 citations

Journal ArticleDOI
01 Jul 1988-Neuron
TL;DR: expression of mRNA has yet to be observed in brain or selected peripheral tissues, suggesting that either it is substantially less abundant than m1-m4 or its distribution is quite different.

782 citations

Journal Article
TL;DR: The diverse binding profiles of individual cloned receptors and the widespread distribution of m1-m4 mRNAs indicate that radioligand binding studies performed on primary tissues may actually be assessing the composite properties of a heterogeneous mixture of muscarinic receptor subtypes.
Abstract: A family of five cholinergic muscarinic receptor genes (m1, m2, m3, m4, and m5) has recently been identified and cloned. In order to investigate the pharmacological properties of the individual muscarinic receptors, we have transfected each of these genes into Chinese hamster ovary cells (CHO-K1) and have established stable cell lines expressing each receptor. In the present study we have examined the antagonist binding properties of each muscarinic receptor. Antagonists were chosen that had previously been proposed to be selective for muscarinic receptor subtypes and included pirenzepine, AF-DX 116, methoctramine, dicyclomine, hexohydrodifenidol, hexahydrosiladifenidol, hexocyclium, and silahexocyclium. m1, m2, and m3 receptors express binding properties similar to those expected of high affinity pirenzepine-type receptors of cerebral cortex ("M1"), low affinity pirenzepine-type receptors of atria ("M2 cardiac type"), and the intermediate affinity pirenzepine-type receptors found in exocrine glands ("M2 glandular type"), respectively. The M1/M2 schema cannot readily accommodate the binding properties of the m4 and m5 receptors. Pirenzepine, methoctramine, and hexahydrosiladifenidol were the most selective agents for the m1, m2, and m3 receptors, respectively. None of the antagonists used in this study were uniquely selective for either the m4 or m5 receptors. The diverse binding profiles of individual cloned receptors and the widespread distribution of m1-m4 mRNAs indicate that radioligand binding studies performed on primary tissues may actually be assessing the composite properties of a heterogeneous mixture of muscarinic receptor subtypes.

645 citations

Journal ArticleDOI
TL;DR: In situ hybridization histochemistry indicated a prevalence of m1 mRNA in the pyramidal cell layer of the hippocampus, the granule cell layer in the dentate gyrus, the olfactory bulb, amygdala, ofactory tubercule, and piriform cortex, while m3 and m4 mRNA predominated in the caudate putamen and cerebral cortex.
Abstract: A family of 4 rat muscarinic receptors (m1, m2, m3, and m4) have recently been cloned and sequenced (Bonner et al., 1987). Since pharmacological probes that are presently available do not appear to distinguish among 3 of these muscarinic receptors, we constructed oligonucleotide probes corresponding to the N-terminal sequences of the muscarinic receptors and used them to specifically localize m1, m2, m3, and m4 mRNA in sections of rat brain using in situ hybridization histochemistry. Northern analysis demonstrated a 3.1 kilobase (kb) m 1 mRNA, a 4.5 kb m3 mRNA, and a 3.3 kb m4 mRNA in cerebral cortex, striatum, hippocampus, and cerebellum. In situ hybridization histochemistry indicated a prevalence of m1 mRNA in the pyramidal cell layer of the hippocampus, the granule cell layer of the dentate gyrus, the olfactory bulb, amygdala, olfactory tubercule, and piriform cortex. Caudate putamen and cerebral cortex showed moderate levels of labeling. m2 mRNA was detectable in the medial septum, diagonal band, olfactory bulb, and pontine nuclei. m3 and m4 mRNA were also prevalent in the olfactory bulb and pyramidal cell layer of the hippocampus but were present only in low levels in the dentate gyrus. m3 mRNA was present in superficial and deep layers of the cerebral cortex, whereas m4 mRNA was more evenly distributed with a slightly more intense labeling evident in the midcortical layer. In addition, m3 mRNA was present in a number of thalamic nuclei and brain-stem nuclei, while m4 mRNA predominated in the caudate putamen. These data offer a new basis on which to interpret the heterogeneity of muscarinic actions in the CNS.

479 citations


Cited by
More filters
Journal ArticleDOI
09 Aug 1990-Nature
TL;DR: The cloning and expression of a complementary DNA that encodes a G protein-coupled receptor that is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana are suggested.
Abstract: Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS) in a complex and dose-dependent manner. Although CNS depression and analgesia are well documented effects of the cannabinoids, the mechanisms responsible for these and other cannabinoid-induced effects are not so far known. The hydrophobic nature of these substances has suggested that cannabinoids resemble anaesthetic agents in their action, that is, they nonspecifically disrupt cellular membranes. Recent evidence, however, has supported a mechanism involving a G protein-coupled receptor found in brain and neural cell lines, and which inhibits adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. Also, the receptor is more responsive to psychoactive cannabinoids than to non-psychoactive cannabinoids. Here we report the cloning and expression of a complementary DNA that encodes a G protein-coupled receptor with all of these properties. Its messenger RNA is found in cell lines and regions of the brain that have cannabinoid receptors. These findings suggest that this protein is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana.

4,806 citations

Journal ArticleDOI
05 Apr 1991-Cell
TL;DR: This work has cloned and characterized 18 different members of an extremely large multigene family that encodes seven transmembrane domain proteins whose expression is restricted to the olfactory epithelium and is likely to encode a diverse family of odorant receptors.

4,537 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
11 Jun 1999-Cell
TL;DR: It is shown that SVZ astrocytes act as neural stem cells in both the normal and regenerating brain and give rise to cells that grow into multipotent neurospheres in vitro.

3,890 citations

Journal ArticleDOI
TL;DR: The small (40S) subunit of eukaryotic ribosomes is believed to bind initially at the capped 5'-end of messenger RNA and then migrate, stopping at the first AUG codon in a favorable context for initiating translation.
Abstract: The small (40S) subunit of eukaryotic ribosomes is believed to bind initially at the capped 5'-end of messenger RNA and then migrate, stopping at the first AUG codon in a favorable context for initiating translation. The first-AUG rule is not absolute, but there are rules for breaking the rule. Some anomalous observations that seemed to contradict the scanning mechanism now appear to be artifacts. A few genuine anomalies remain unexplained.

3,389 citations