scispace - formally typeset
Search or ask a question
Author

Noel P. O’Dowd

Bio: Noel P. O’Dowd is an academic researcher from University of Limerick. The author has contributed to research in topics: Creep & Residual stress. The author has an hindex of 34, co-authored 151 publications receiving 5483 citations. Previous affiliations of Noel P. O’Dowd include Brown University & California Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a two-parameter fracture mechanics approach for tensile mode crack tip states in which the fracture toughness and the resistance curve depend on Q, i.e., JC(Q) and JR(Δa, Q), is proposed.
Abstract: Central to the J-based fracture mechanics approach is the existence of a HRR near-tip field which dominates the actual field over size scales comparable to those over which the micro-separation processes are active. There is now general agreement that the applicability of the J-approach is limited to so-called high-constraint crack geometries. We review the J-annulus concept and then develop the idea of a J-Q annulus. Within the J-Q annulus, the full range of high- and low-triaxiality fields are shown to be members of a family of solutions parameterized by Q when distances are measured in terms of J σ 0 , where σ0 is the yield stress. The stress distribution and the maximum stress depend on Q alone while J sets the size scale over which large stresses and strains develop. Full-field solutions show that the Q-family of fields exists near the crack tip of different crack geometries at large-scale yielding. The Q-family provides a framework for quantifying the evolution of constraint as plastic flow progresses from small-scale yielding to fully yielded conditions, and the limiting (steady-state) constraint when it exist. The Q value of a crack geometry can be used to rank its constraint, thus giving a precise meaning to the term crack-tip constraints, a term which is widely used in the fracture literature but has heretofore been unquantified. A two-parameter fracture mechanics approach for tensile mode crack tip states in which the fracture toughness and the resistance curve depend on Q, i. JC(Q) and JR(Δa, Q), is proposed.

1,023 citations

Journal ArticleDOI
TL;DR: In this paper, the J-dominance is used to define the size scale over which large stresses and strains develop while Q scales the near-tip stress distribution and the stress triaxiality achieved ahead of the crack.
Abstract: C entral to the J-based fracture mechanics approach is the concept of J-dominance whereby J alone sets the stress level as well as the size scale of the zone of high stresses and strains. In Part I the idea of a J Q annulus was developed. Within the annulus, the plane strain plastic near-tip fields are members of a family of solutions parameterized by Q when distances are normalized by J σ 0 , where σ0is the yield stress, J and Q have distinct roles: J sets the size scale over which large stresses and strains develop while Q scales the near-tip stress distribution and the stress triaxiality achieved ahead of the crack. Specifically, negative (positive) Q values mean that the hydrostatic stress is reduced (increased) by Qσ0 from the Q = 0 plane strain reference state. Therefore Q provides a quantitative measure of crack-tip constraint, a term widely used in the literature concerning geometry and size effects on a material's resistance to fracture. These developments are discussed further in this paper. It is shown that the J Q approach considerably extends the range of applicability of fracture mechanics for shallow-crack geometries loaded in tension and bending, and deep-crack geometries loaded in tension. The J Q theory provides a framework to organize toughness data as a function of constraint and to utilize such data in engineering applications. Two methods for estimating Q at fully yielded conditions and an interpolation scheme are discussed. The effects of crack size and specimen type on fracture toughness are addressed.

791 citations

Journal ArticleDOI
TL;DR: In this article, a slip-system-based constitutive formulation is proposed to account for the additional strengthening mechanism associated with the deformation gradients within a single crystal with a high volume fraction of dispersed inclusions.
Abstract: In this work, a gradient- and rate-dependent crystallographic formulation is proposed to investigate the macroscopic behaviour of two-phase single crystals. The slip-system-based constitutive formulation relies on strain-gradient concepts to account for the additional strengthening mechanism associated with the deformation gradients within a single crystal with a high volume fraction of dispersed inclusions. The resulting total slip resistance in each active system is assumed to be due to a mixed population of forest obstacles arising from both statistically stored and geometrically necessary dislocations. The non-local theory is implemented numerically into the finite element method and used to investigate the effect of the relevant microstructural (i.e., size and volume fraction of precipitated inclusions) and deformation-gradient-related length scales on the macroscopic behaviour of a typical nickel-based superalloy single crystal. An analytical framework to link the strain-gradient effects at the microscopic level with the macroscopic behaviour of an equivalent homogeneous single crystal is also proposed.

319 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the finite element implementation of a generalised strain gradient and rate-dependent crystallographic formulation for finite strains and general anisothermal conditions based on a multiplicative decomposition of the deformation gradient.

187 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental technique whereby pure mode I, mode II, and combined mode I-mode II fracture toughness values of ceramic materials can be determined using four-point bend specimens containing sharp, through-thickness precracks is discussed.
Abstract: An experimental technique whereby pure mode I, mode II, and combined mode I-mode II fracture toughness values of ceramic materials can be determined using four-point bend specimens containing sharp, through-thickness precracks is discussed. In this method, notched and fatigue-precracked specimens of brittle solids are subjected to combined mode I-mode II and pure mode II fracture under asymmetric four-point bend loading and to pure mode I under symmetric bend loading. A detailed finite element analysis of the test specimen is performed to obtain stress intensity factor calibrations for a wide range of loading states. The effectiveness of this method to provide reproducible combined mode I-mode II fracture toughness values is demonstrated with experimental results obtained for a polycrystalline Al2O3. Multiaxial fracture mechanics of the Al2O3 ceramic in combined modes I, II, and III are also described in conjunction with the recent experimental study of Suresh and Tschegg (1987). While the mode II fracture toughness of the alumina ceramic is comparable to the mode I fracture toughness KIc, the mode III fracture initiation toughness is 2.3 times higher than KIc. The predictions of fracture toughness and crack path based on various mixed-mode fracture theories are critically examined in the context of experimental observations, and possible effects of fracture abrasion on the apparent mixed-mode fracture resistance are highlighted. The significance and implications of the experimental methods used in this study are evaluated in the light of available techniques for multiaxial fracture testing of brittle solids.

185 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of continuum-based variational formulations for describing the elastic-plastic deformation of anisotropic heterogeneous crystalline matter is presented and compared with experiments.

1,573 citations

Book
02 Feb 2004
TL;DR: The role of stress in mass transport is discussed in this article, where the authors consider anisotropic and patterned films, buckling, bulging, peeling and fracture.
Abstract: 1. Introduction and overview 2. Film stress and substrate curvature 3. Stress in anisotropic and patterned films 4. Delamination and fracture 5. Film buckling, bulging and peeling 6. Dislocation formation in epitaxial systems 7. Dislocation interactions and strain relaxation 8. Equilibrium and stability of surfaces 9. The role of stress in mass transport.

1,562 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive computational study was undertaken to identify the extent to which elasto-plastic properties of ductile materials could be determined from instrumented sharp indentation and to quantify the sensitivity of such extracted properties to variations in the measured indentation data.

1,299 citations

Journal ArticleDOI
TL;DR: In this article, a class of phenomenological strain gradient plasticity theories is formulated to accommodate more than one material length parameter, which is a generalization of the classical J2 3ow theory of plasticity to account for strain gradient e4ects that emerge in deformation phenomena at the micron scale.
Abstract: A class of phenomenological strain gradient plasticity theories is formulated to accommodate more than one material length parameter. The objective is a generalization of the classical J2 3ow theory of plasticity to account for strain gradient e4ects that emerge in deformation phenomena at the micron scale. A special case involves a single length parameter and is of similar form to that proposed by Aifantis and co-workers. Distinct computational advantages are associated with this class of theories that make them attractive for applications requiring the generation of numerical solutions. The higher-order nature of the theories is emphasized, involving both higher-order stresses and additional boundary conditions. Competing members in the class of theories will be examined in light of experimental data on wire torsion, sheet bending, indentation and other micron scale plasticity phenomena. The data strongly suggest that at least two distinct material length parameters must be introduced in any phenomenological gradient plasticity theory, one parameter characterizing problems for which stretch gradients are dominant and the other relevant to problems when rotation gradients (or shearing gradients) are controlling. Flow and deformation theory versions of the theory are highlighted that can accommodate multiple length parameters. Examination of several basic problems reveals that the new formulations predict quantitatively similar plastic behavior to the theory proposed earlier by the present authors. The new formulations improve on the earlier theory in the manner in which elastic and plastic strains are decomposed and in the representation of behavior in the elastic range. ? 2001 Elsevier Science Ltd. All rights reserved.

1,075 citations