scispace - formally typeset
Search or ask a question
Author

Noel T. Keen

Bio: Noel T. Keen is an academic researcher from University of California, Riverside. The author has contributed to research in topics: Pseudomonas syringae & Pectate lyase. The author has an hindex of 54, co-authored 129 publications receiving 9784 citations.


Papers
More filters
Journal ArticleDOI
15 Oct 1988-Gene
TL;DR: Improved broad-host-range plasmid vectors were constructed based on existing plasmids RSF1010 and RK404 and have several additional cloning sites and improved antibiotic-resistance genes which facilitate subcloning and mobilization into various Gram-negative bacteria.

1,520 citations

Journal ArticleDOI
04 Jun 1993-Science
TL;DR: The three-dimensional structure of pectate lyase C from Erwinia chrysanthemi has been solved and refined to a resolution of 2.2 angstroms and suggests that the parallel beta helix motif may occur in a broad spectrum of proteins.
Abstract: Pectate lyases are secreted by pathogens and initiate soft-rot diseases in plants by cleaving polygalacturonate, a major component of the plant cell wall. The three-dimensional structure of pectate lyase C from Erwinia chrysanthemi has been solved and refined to a resolution of 2.2 angstroms. The enzyme folds into a unique motif of parallel beta strands coiled into a large helix. Within the core, the amino acids form linear stacks and include a novel asparagine ladder. The sequence similarities that pectate lyases share with pectin lyases, pollen and style proteins, and tubulins suggest that the parallel beta helix motif may occur in a broad spectrum of proteins.

449 citations

Journal ArticleDOI
TL;DR: A genomic library of Pseudomonas syringae pv.
Abstract: A genomic library of Pseudomonas syringae pv. glycinea race 6 DNA was constructed in the mobilizable cosmid vector pLAFR1 and maintained in Escherichia coli HB101. Completeness of the library was estimated by assaying clones for the expression of ice-nucleating activity in E. coli. Ice-nucleation activity was represented approximately once in every 600 clones. Six hundred eighty random race 6 cosmid clones were mobilized from E. coli by plasmid pRK2013 in individual conjugations to a race 5 strain of P. s. glycinea. A single clone (pPg6L3) was detected that changed the race specificity of race 5 from virulent (compatible) to avirulent (incompatible) on the appropriate soybean cultivars. The clone was also mobilized from E. coli into race 1 and race 4 strains of P. s. glycinea, and it conferred on these transconjugants the same host range incompatibility as the wild-type race 6 strain. The cosmid clone was mapped by restriction endonucleases, and two adjacent EcoRI fragments were identified by transposon Tn5 mutagenesis to be important in determining race specificity. Southern blot analysis showed that the two EcoRI fragments are unique to race 6 and are not present in the other races tested. The cosmid clone pPg6L3 was also mobilized to Pseudomonas fluorescens and Rhizobium japonicum. However, neither these isolates nor E. coli harboring pPg6L3 elicited a hypersensitive reaction in soybean leaves.

429 citations

Book
12 Jul 2012
TL;DR: Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites and Linda S. Thomashow and David M. Weller.
Abstract: Molecular cloning of plant disease resistance genes-- Gregory B. Martin Transgenic plants for disease control-- Luis Herrera-Hestrella, Laura Silva Rosales, and Rafael Rivera-Bustamante Systemic acquired resistance-- Urs Neuenschwander, Kay Lawton, and John Ryals Interactions of grasses with endophytic Epichloe species and hybrids-- Christopher L. Schardl Pathogenesis and sexual development of the smut fungi-- J.W. Kronstad Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites-- Linda S. Thomashow and David M. Weller Legume signals to rhizobial symbionts: a new approach for defining rhizosphere colonization-- Donald A. Philips and Wolfgang R. Streit Nodulation factors-- Jean Claude Prome and Nathalie Demont

385 citations

Journal ArticleDOI
TL;DR: Like other studied ecosystems, microbial phyllosphere communities are more complex than previously thought, based on conventional culture-based methods.
Abstract: Phyllosphere microbial communities were evaluated on leaves of field-grown plant species by culture-dependent and -independent methods. Denaturing gradient gel electrophoresis (DGGE) with 16S rDNA primers generally indicated that microbial community structures were similar on different individuals of the same plant species, but unique on different plant species. Phyllosphere bacteria were identified from Citrus sinesis (cv. Valencia) by using DGGE analysis followed by cloning and sequencing of the dominant rDNA bands. Of the 17 unique sequences obtained, database queries showed only four strains that had been described previously as phyllosphere bacteria. Five of the 17 sequences had 16S similarities lower than 90% to database entries, suggesting that they represent previously undescribed species. In addition, three fungal species were also identified. Very different 16S rDNA DGGE banding profiles were obtained when replicate cv. Valencia leaf samples were cultured in BIOLOG EcoPlates for 4.5 days. All of these rDNA sequences had 97–100% similarity to those of known phyllosphere bacteria, but only two of them matched those identified by the culture independent DGGE analysis. Like other studied ecosystems, microbial phyllosphere communities therefore are more complex than previously thought, based on conventional culture-based methods.

334 citations


Cited by
More filters
Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production and provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms.
Abstract: Many plant-associated microbes are pathogens that impair plant growth and reproduction. Plants respond to infection using a two-branched innate immune system. The first branch recognizes and responds to molecules common to many classes of microbes, including non-pathogens. The second responds to pathogen virulence factors, either directly or through their effects on host targets. These plant immune systems, and the pathogen molecules to which they respond, provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms. A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production.

10,539 citations

Journal ArticleDOI
01 Dec 1995-Gene
TL;DR: In this paper, four new antibiotic-resistant derivatives of the broad-host-range (bhr) cloning vector pBBR1MCS have been constructed, which are relatively small (< 5.3 kb), possess an extended multiple cloning site (MCS), and allow direct selection of recombinant plasmid molecules in Escherichia coli via disruption of the LacZ alpha peptide.

3,061 citations

Journal ArticleDOI
TL;DR: A comparison of the structure, function, regulation, and impact on host cells of the type III secretion systems in the animal pathogens Yersinia spp.
Abstract: Various gram-negative animal and plant pathogens use a novel, sec-independent protein secretion system as a basic virulence mechanism. It is becoming increasingly clear that these so-called type III secretion systems inject (translocate) proteins into the cytosol of eukaryotic cells, where the translocated proteins facilitate bacterial pathogenesis by specifically interfering with host cell signal transduction and other cellular processes. Accordingly, some type III secretion systems are activated by bacterial contact with host cell surfaces. Individual type III secretion systems direct the secretion and translocation of a variety of unrelated proteins, which account for species-specific pathogenesis phenotypes. In contrast to the secreted virulence factors, most of the 15 to 20 membrane-associated proteins which constitute the type III secretion apparatus are conserved among different pathogens. Most of the inner membrane components of the type III secretion apparatus show additional homologies to flagellar biosynthetic proteins, while a conserved outer membrane factor is similar to secretins from type II and other secretion pathways. Structurally conserved chaperones which specifically bind to individual secreted proteins play an important role in type III protein secretion, apparently by preventing premature interactions of the secreted factors with other proteins. The genes encoding type III secretion systems are clustered, and various pieces of evidence suggest that these systems have been acquired by horizontal genetic transfer during evolution. Expression of type III secretion systems is coordinately regulated in response to host environmental stimuli by networks of transcription factors. This review comprises a comparison of the structure, function, regulation, and impact on host cells of the type III secretion systems in the animal pathogens Yersinia spp., Pseudomonas aeruginosa, Shigella flexneri, Salmonella typhimurium, enteropathogenic Escherichia coli, and Chlamydia spp. and the plant pathogens Pseudomonas syringae, Erwinia spp., Ralstonia solanacearum, Xanthomonas campestris, and Rhizobium spp.

2,456 citations

Journal ArticleDOI
TL;DR: Rhizobacteria-mediated induced systemic resistance (ISR) is effective under field conditions and offers a natural mechanism for biological control of plant disease.
Abstract: Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean, carnation, cucumber, radish, tobacco, and tomato under conditions in which the inducing bacteria and the challenging pathogen remained spatially separated. Bacterial strains differ in their ability to induce resistance in different plant species, and plants show variation in the expression of ISR upon induction by specific bacterial strains. Bacterial determinants of ISR include lipopolysaccharides, siderophores, and salicylic acid (SA). Whereas some of the rhizobacteria induce resistance through the SA-dependent SAR pathway, others do not and require jasmonic acid and ethylene perception by the plant for ISR to develop. No consistent host plant alterations are associated with the induced state, but upon challenge inoculation, resistance responses are accelerated and enhanced. ISR is effective under field conditions and offers a natural mechanism for biological control of plant disease.

2,146 citations

Journal ArticleDOI
TL;DR: The molecular determinants of Listeria virulence and their mechanism of action are described and the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listersia infection is summarized.
Abstract: The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research.

2,139 citations