scispace - formally typeset
Search or ask a question
Author

Nomi L. Harris

Bio: Nomi L. Harris is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Medicine & Computer science. The author has an hindex of 24, co-authored 50 publications receiving 13122 citations. Previous affiliations of Nomi L. Harris include University of California, San Francisco & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
24 Mar 2000-Science
TL;DR: The nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome is determined using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map.
Abstract: The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.

6,180 citations

Journal ArticleDOI
Seth Carbon1, Eric Douglass1, Nathan Dunn1, Benjamin M. Good1  +189 moreInstitutions (19)
TL;DR: GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models.
Abstract: The Gene Ontology resource (GO; http://geneontology.org) provides structured, computable knowledge regarding the functions of genes and gene products. Founded in 1998, GO has become widely adopted in the life sciences, and its contents are under continual improvement, both in quantity and in quality. Here, we report the major developments of the GO resource during the past two years. Each monthly release of the GO resource is now packaged and given a unique identifier (DOI), enabling GO-based analyses on a specific release to be reproduced in the future. The molecular function ontology has been refactored to better represent the overall activities of gene products, with a focus on transcription regulator activities. Quality assurance efforts have been ramped up to address potentially out-of-date or inaccurate annotations. New evidence codes for high-throughput experiments now enable users to filter out annotations obtained from these sources. GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models. We also provide the ‘GO ribbon’ widget for visualizing GO annotations to a gene; the widget can be easily embedded in any web page.

2,138 citations

Journal ArticleDOI
TL;DR: A historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations is made available to maintain consistency with other ontologies.
Abstract: The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations.

1,988 citations

Journal ArticleDOI
24 Mar 2000-Science
TL;DR: The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.
Abstract: A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.

1,563 citations

Journal ArticleDOI
Adam P. Arkin1, Adam P. Arkin2, Robert W. Cottingham3, Christopher S. Henry4, Nomi L. Harris1, Rick Stevens5, Sergei Maslov6, Paramvir S. Dehal1, Doreen Ware7, Fernando Perez, Shane Canon1, Michael W. Sneddon1, Matthew L. Henderson1, William J. Riehl1, Dan Murphy-Olson4, Stephen Y. Chan1, Roy T. Kamimura1, Sunita Kumari7, Meghan M Drake3, Thomas Brettin4, Elizabeth M. Glass4, Dylan Chivian1, Dan Gunter1, David J. Weston3, Benjamin H. Allen3, Jason K. Baumohl1, Aaron A. Best8, Benjamin P. Bowen1, Steven E. Brenner2, Christopher Bun4, John-Marc Chandonia1, Jer Ming Chia7, R. L. Colasanti4, Neal Conrad4, James J. Davis4, Brian H. Davison3, Matthew DeJongh8, Scott Devoid4, Emily M. Dietrich4, Inna Dubchak1, Janaka N. Edirisinghe5, Janaka N. Edirisinghe4, Gang Fang9, José P. Faria4, Paul M. Frybarger4, Wolfgang Gerlach4, Mark Gerstein9, Annette Greiner1, James Gurtowski7, Holly L. Haun3, Fei He6, Rashmi Jain1, Rashmi Jain10, Marcin P. Joachimiak1, Kevin P. Keegan4, Shinnosuke Kondo8, Vivek Kumar7, Miriam Land3, Folker Meyer4, Mark Mills3, Pavel S. Novichkov1, Taeyun Oh10, Taeyun Oh1, Gary J. Olsen11, Robert Olson4, Bruce Parrello4, Shiran Pasternak7, Erik Pearson1, Sarah S. Poon1, Gavin Price1, Srividya Ramakrishnan7, Priya Ranjan12, Priya Ranjan3, Pamela C. Ronald10, Pamela C. Ronald1, Michael C. Schatz7, Samuel M. D. Seaver4, Maulik Shukla4, Roman A. Sutormin1, Mustafa H Syed3, James Thomason7, Nathan L. Tintle8, Daifeng Wang9, Fangfang Xia4, Hyunseung Yoo4, Shinjae Yoo6, Dantong Yu6 
TL;DR: Author(s): Arkin, Adam P; Cottingham, Robert W; Henry, Christopher S; Harris, Nomi L; Stevens, Rick L; Maslov, Sergei; Dehal, Paramvir; Ware, Doreen; Perez, Fernando; Canon, Shane; Sneddon, Michael W; Henderson, Matthew L; Riehl, William J; Murphy-Olson, Dan; Chan, Stephen Y; Kamimura, Roy T.
Abstract: Author(s): Arkin, Adam P; Cottingham, Robert W; Henry, Christopher S; Harris, Nomi L; Stevens, Rick L; Maslov, Sergei; Dehal, Paramvir; Ware, Doreen; Perez, Fernando; Canon, Shane; Sneddon, Michael W; Henderson, Matthew L; Riehl, William J; Murphy-Olson, Dan; Chan, Stephen Y; Kamimura, Roy T; Kumari, Sunita; Drake, Meghan M; Brettin, Thomas S; Glass, Elizabeth M; Chivian, Dylan; Gunter, Dan; Weston, David J; Allen, Benjamin H; Baumohl, Jason; Best, Aaron A; Bowen, Ben; Brenner, Steven E; Bun, Christopher C; Chandonia, John-Marc; Chia, Jer-Ming; Colasanti, Ric; Conrad, Neal; Davis, James J; Davison, Brian H; DeJongh, Matthew; Devoid, Scott; Dietrich, Emily; Dubchak, Inna; Edirisinghe, Janaka N; Fang, Gang; Faria, Jose P; Frybarger, Paul M; Gerlach, Wolfgang; Gerstein, Mark; Greiner, Annette; Gurtowski, James; Haun, Holly L; He, Fei; Jain, Rashmi; Joachimiak, Marcin P; Keegan, Kevin P; Kondo, Shinnosuke; Kumar, Vivek; Land, Miriam L; Meyer, Folker; Mills, Marissa; Novichkov, Pavel S; Oh, Taeyun; Olsen, Gary J; Olson, Robert; Parrello, Bruce; Pasternak, Shiran; Pearson, Erik; Poon, Sarah S; Price, Gavin A; Ramakrishnan, Srividya; Ranjan, Priya; Ronald, Pamela C; Schatz, Michael C; Seaver, Samuel MD; Shukla, Maulik; Sutormin, Roman A; Syed, Mustafa H; Thomason, James; Tintle, Nathan L; Wang, Daifeng; Xia, Fangfang; Yoo, Hyunseung; Yoo, Shinjae; Yu, Dantong

743 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing.
Abstract: Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.

35,225 citations

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations

Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

12,098 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations